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STOCHASTIC STRUCTURE OF CLOUD AND RADIATION FIELDS
Yus R. Mullamaa, M. A. Sulev, V. K. Poldmaa,
H. A. Ohvril, H. J. Niylisk, M. I. Allenov,
L. G. Tchubakov, A. F. Kuusk!

Foreword

Cloudiness is one of the most important factors determining the nature of /5%

most processes taking place in the Earth's atmosphere. Cloudiness regulates

the radiation balance. The role of cloudiness as a basic element in weather
formation feedback is obvious. The instability of the cloud cover, and espe-
cially of the cumulus population, which is the most variable, leaves its imprint
on the course of these processes. In shielding us from the Sun, cloudiness
regulates the arrival of solar radiation. Detection takes place because many
natural processes (such as heating of the atmosphere and of the Earth's surface,
the melting of snow, photosynthesis, and so forth) are nonlinear relative to
radiation. For this reason these processes depend not only on the mean amount of
incoming radiation but also on the variation of the latter in space and time,
which is largely determined by the structure of cloud fields.

At the same time, we are not thoroughly familiar with the laws governing the
transfer of energy (including the conversion of solar radiation) in mesoscale
processes under unstable cloudiness conditions, i.e., sufficient study has not
yet been made of the physical formation of weather in a real, non-hypothetical
atmosphere.

It is now universally acknowledged that from the viewpoint of practical
application it is necessary to consider the radiative and optical characteristics
not of the individual clouds but of cloudiness in general as a stochastic forma-
tion. Even in the relatively recent past there was no way of approaching soélution
of problems of this nature. It seemed to be impossible even to establish a
rigidly scientific formulation of such problems. In particular, in utilizing the
transfer theory to study the radiation regime of the real atmosphere investiga-
tors were forced to restrict themselves either to clear weather conditions of
to uniform continuous stratified clouds. This was due to the circumstance that
effective methods of applying the transfer theory to stochastic structures such /6
as a broken cloud cover were virtually non-existent. Obstacles were represented
by the mathematical difficulties, which even now have not been fully overcome,
in solving the transfer equation for a medium with statistically disturbed
optical parameters varying over a very wide range, as well as the lack of methods
for experimental determination of the microphysical cloudiness parameters entering
into this theory and the variability of these parameters in a given concrete
situation. '

*Numbers in margin indicate pagination from foreign text.
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Hence emphasis is now being placed on study of the statistical parameters
and radiation fields and their interrelations. This field also includes study
of the stochastic structure of cloud and radiation fields which has been con-
ducted in recent years at the Department of Atmospheric Physics of the Institute
of Physics and Astronomy, Academy of Sciences of the Estonian SSR. The present
book is devoted to a systematic presentation of this research.

G. V. Rozenberg promoted this research; he was the initiator of the basic
ideas underlying the investigations and took active part in drawing up the pro-
gram for them.

In 1966 a joint project was instituted among groups of specialists in the
radiation energetics of the atmosphere from the Institute of Atmospheric Physics
of the Academy of Sciences of the USSR, the Ukrainian Hydrometeorological
Scientific Research Institute, and the Institute of Physics and Astronomy of the
Academy of Sciences of the Estonian SSR., The project was organized and directed
by Prof. G. V. Rozenberg and Ye. M. Feygel'son, Doctor of Physical and Mathema-
tical Sciences. The success of the project was assured by the assistance of
Yu. K. Ross, Doctor of Physical and Mathematical Sciences, in formulation of the
problem and in organization of the joint studies.

Within the framework of the joint research, which continued until 1970, study
was made chiefly of radiative heat transfer. At the same time, research was
instituted at the Institute of Atmospheric Physics of the Academy of Sciences
of the USSR and the Institute of Atmospheric Physics of the Academy of Sciences
of the Estonian SSR on the statitical structure of radiation fields in the

atmosphere when clouds are present. The results of these joint studies were /7

published in a collection entitled "Heat Transfer in the Atmosphere.' In recent
years study of the stochastic structure of radiation and cloud fields has been
continued and expanded at both Institutes. ,

For the sake of completeness of presentation, along with previously
unpublished results the present study also includes the results of work done
within the framework of joint research. Only to a certain extent, however, have
comparisons been made with the results of studies by other investigators.

The present study is the result of the joint work of a team consisting of
M, I. Allenov, A. E. Kuusk, H. I. Ni¥lisk, Associate in Physical and Mathemati-
cal Sciences, H. A. Ohvril, V. K. Poldmaa, Associate in Physical and Mathemati-
cal Sciences, M, A, Sulev, Associate in Physical and Mathematical Sciences,
L. G. Chubakov, and Yu.. R. Mullamaa, Associate in Physical and Mathematical
Sciences, who supervised the project group and generalized the data obtained.
The present paper was written by Yu. R. Mullamaa, with the exception of Section
4 of Chapter II and Section 4 of Chapter V, which were written by M. I. Allenov,
and Section I of Chapter V, written by H. J. Niylisk. The following took part
in writing individual sections of the book: Vi K. Poldmaa, Section 3 of Chapter
I; H. A. Ohvril, Section 4 of Chapter I; M. A. Sulev, Sections 1-3, 5 and 6 of
Chapter II; M. I. Allenov, Section 4 of Chapter II; V. K. Poldmaa and M. A.
Sulev, Sections 2 and 3 of Chapter 3; H. A. Ohvril, Sections 4-6 of Chapter 3;
V. K. Poldmaa, Section 7 of Chapter 3; H. A. Ohvril, Section 1 and 2 of Chapter
IV; V. K. Poldmaa and M. A. Sulev, Sections 3-5 of Chapter IV; A. E. Kuusk,




Section 6 of Chapter IV; H. J. Niylisk, Sections 1 and 2 of Chapter V; H. A.
Ohvril, Section 3 of Chapter V; and M. I. Allenov and L. G. Chubakov, Section 4

of Chapter V.

The present work consists of five chapters. In the first chapter a general
formulation of the problem is given and the possibilities afforded by application
of the theory of random processes are considered. The statistical characteristics
of random processes utilized to describe and analyze the structure of cloud and
radiation fields are presented, possible errors in experimental measurement of
such fields are estimated, and information is given on the methods used in con-
version of statistical characteristics. A description is given of the cloud
model we have constructed, which is employed in theoretical analysis of the
results obtained. /8

The array of equipment used in the experimental studies is described in the
second chapter. The results of investigation of the stochastic structure of
the cloud cover are presented in Chapter III.

The stochastic structures of shortwave and longwave radiation fields and
their relationship to the cloud cover structure are considered in Chapters 4
and S.

A first attempt at systematic presentation of study of the stochastic
structure of cloud and radiation fields of the earth's atmosphere must inevitably
be imcomplete. At the present time more or less complete experimental data have
been obtained only on cumulus clouds. Nor has full use been made of the poten-
tial of theoretical analysis of the available experimental data. A convenient
form has nevertheless been found for modeling cloud fields on the basis of which
‘theoretical analysis has been performed making it possible to establish the
relationship between cloud structure and radiation field structure. The measure-
ments actually performed have confirmed the theoretical assumptions made. The
parameters employed in the theory have been determined by way of experiment. A
considerable number of important empirical relations have also been established.
A more or less complete concept has consequently been fashioned, one which may
be used to advantage in consideration of a number of problems of atmospheric
physics.

The authors would like to express their great indebtedness to Prof. G. V.
Rozenberg for his encouragement toward the conduct of this research, his guidance
in the matter of the underlying concept, and his constant support as the work
progressed. Thanks are due E. M. Feigelson, Doctor of Physical and Mathematical
Sciences for organization and scientific guidance in the process of the joint
research, to N, I. Goisa, Associate in Geographic Sciences, for his kind
collaboration, to A. I. Furman, Director of the Meteorological Experimental
Station of the Ukrainian Yydrometeorological Scientific Research Institute, for
his assistance in carrying out joint aircraft research and to R. G. Timanovskaya
for her participation in the research.

The authors are grateful to the head of the Department of Atmospheric Physics,
J. K. Ross, Doctor of Physical and Mathematical Sciences, for his extensive



support and assistance both in formulation of the problem and in resolving /9
organizational problems, and to all the personnel of the Institute who partici- =~
pated in the studies and in compilation of the present work.



CHAPTER I. STATISTICAL DESCRIPTION OF CLOUD AND RADIATION FIELDS /13

Septipp 1.

Intrqduction

The cloud cover is basically a stochastic formation. Hence in the study
of the properties of clouds as a complete formation they must be described
statistically. In addition, owing to the influénce of the cloud cover on the
radiation field, the latter is also stochastic when clouds are present and it
must be described by statistical methods. As a result, formulation of the problem
itself is of a nature such that it is necessary to seek a relationship between
the structural characteristics of radiation fields on the one hand &nd the cloud
cover on the other. All attempts to utilize deterministic methods, including the
transfer equation, for this purpose have proved to be ineffective, At the same
time, no statistical theory of transfer exists. At the present time only the first
steps have been taken toward generalization of the transfer theory to media with
statistically distributed paramters. This circumstance is to be ascribed to
the mathematical difficulties inherent in solution of the transfer equation for
such a medium,

An obstacle of no less importance, and indeed the main one from the viewpoint
of the physics of the problem, is the disparity between the transfer theory and
actual experimental capabilities. There are virtually no methods of experimental
determination of the entire complex of microphysical cloudiness factors entering
into this theory, and especially the variability of such factors in the constantly
changing concrete situations in the real atmosphere.

In view of the foregoing, there is no sense in proceeding on the basis of the /14
radiative theory, taking all its fine points into account. Theoretical synthesis
should not in our opinion strive for excessive precision. It should be approxima-
tive in nature. At the same time, due attention must be devoted to adjustment
of the structure of the theory to experimental capabilities, since only actual
measurements can confirm theoretical expectations and determine the parameters
involved in the theory.

Thus formulation of the problem itself depends largely on the scale of the
phenomenon in question, and the structure of the theory in turn depends on the
formulation of the problem. In addition to the physical nature of the problem,
an approach such as this is at the present time dictated by mathematical consi-
derations, since statistical analysis in the general form, without numerical
analysis in the form of tables and graphs, simply cannot be accomplished without
a convenient and flexible mathematical apparatus.

We are faced with the problem of mesoscale study of cloud and radiation fields
and their relationships. The special interest in mesoscale processes is due to
the fact that precisely on such scales and over the typical time interval-,
corresponding to them is the influence of radiation exerted on natural processes
and does cloudiness appear in the role of feedback regulator in the formation
of weather.



It must be noted that the radiation regime of an individual uniform stratified
cloud has now been thoroughly studied within the framework of the deterministic
transfer theory. However, under actual conditions the scales of such cloud sec-
tions which are horizontally uniform is small, i.e., the radiation regime of
plane-parallel cloud formation is insignificant in the array of phenomena under

consideration.

In the radiation characteristics of cloudiness as a complete formation the
minute details of the structure and radiation properties of individual cloud
elements are smoothed out and thus exert only a slight effect, both from the
viewpoint of energetics and as regards influence on the atmosphere.

Hence in undertaking to study the optics of the cloud cover as:a complete /15
formation it is logical to exclude superfluous details from the analysis and
to characterize the cloud cover by a small number of generalized microparameters.
In the process the minuteness of detail of the parameters, as was noted earlier,
is determined by the physical nature of the problems under consideration and
the natural restrictions determining the reproducibility of a concrete measurement.
It goes without saying that the introduction of generalizing microparameters en-
tails the need for study of their relationship to the definitive aggregate of
microoptical parameters, with allowance made for the variability of the latter.

The minimum scale to which macrocharacteristics are applicable is determined
primarily by the possibility of establishing sufficiently stable mean values for
the macrooptical parameters, i.e., it is dictated by the physics of cloud forma-
tion, but insofar as radiation processes are concerned the minimum scale must
considerably exceed the length of the mean free path of a photon in a cloud. In
addition, in determination of the minimum cloud structure scale the basis adopted
should be the scales of modulation of the radiation field determined by this
structure. On the basis of our experimental studies (for further details see
Chapter III) in the shortwave region of the spectrum, approximately 100 m should
be adopted as the minimum scale, The optical properties of the cloud cover are
known to depend largely on the wavelength of radiation. The minimum scale is re-
duced in the region of thermal radiation, where the length of the mean free path

of a photon is substantially shorter.

We give no consideration to the comparatively well known large-scale processes,
which determine the climate of our planet and on the theory of which synoptic
weather forecasting methods rest.

The maximum scales of the statistical structure of cloud and radiation fields
with which we are concerned are determined by the extent of the cloud formations.
If the scales were to be larger, we would enter the domain of large-scale
nephanalysis. As our experiments demonstrate (for further details see Chapters
IIT and IV), the maximum scales for various types of cloud formations range from

50 to 500 km.

Thus the scale of the processes is determined by the dynamics of the atmos- /16
sphere and should always be verified by experiment. This is one of the key areas
in which a theory is untenable without experimentation.
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As we know from the theory of random processes, actual processes are never
rigorously stationary, if for no other reason than that they are restricted in
time or space. This is fully applicable to radiation and cloud fields, which
generally speaking are non-homogeneous and especially are non-isotropic. However,
the results of experimental research indicate that it is almost always possible
to select temporal or spatial scales of adequate extent within the limits of
mesoscale processes, in which the processes investigated may be regarded in
approximation as being stationary (homogeneous). From the mathematical viewpoint
homogeneous fields, and especially isotropic ones, are unquestionably the simplest
and for this reason it is advisable to conduct model study to ascertain the typical
features of radiation and cloud fields by means of approximation to these fields.

In processing the results of experimental studies we employ two criteria for
scale selection: (1) the possibility of formation of mean values and (2) the
asymptotic force of the structural function. We accordingly select the spatial
or temporal averaging scales which yield minimum dispersion for the statistical
characteristics. The statistical characteristics of the radiation and cloud
fields determined from the experimental studies involve an error which depends
not only on instrument accuracy and the physical nature of the quantities studied,
but on the nature of the variability of the latter as well.

Inasmuch as statistical description is involved, and, as we saw earlier, the
accuracy is limited, only one-dimensional and two-dimensional probability dis-
tribution functions and first-order and second-order factors can be arrived at
with acceptable accuracy. From the mathematical viewpoint this means that
accurate algorithms are obtained for linear cqnversions of statistical charac-
teristics, but only approximate ones for nonlinear conversions. At the same
time, in the latter case the accuracy is determined to a considerable extent both /17
by the nature of the nonlinear conversion and by the properties of the randon
process being converted.

Inasmuch as analysis of two interrelated stochastic fields (clouds and radi-
ation) characterized by a large number of parameters is involved, it is necessary
to investigate:

(1) the relationship between the statistics of the various parameters of each
of these fields separately;

(2) conversion of these relationships on change in the observer's position
relative to the cloud cover; and

(3) the relationship between the statistical characteristics of the fields.

The problem is greatly simplified by the circumstance that there is a linear
relationship between many of the radiation and cloud parameters. The chief com-
plications occur in study of the relationships between the statistics of radia-
tions fields and the optical macroparameters of the cloud cover. This occasions
mathematical difficulties, as well as considerable errors, which are inherent
in even the simplest non-linear conversions. Only the first steps have been
taken in this field of research and the results obtained are highly tentative
in nature.



Let us proceed now to presentation of the algorithms of statistical character-
istics employed in description of the cloud and radiation field structures.

Section 2. Basic Charactéristics in The Theory of Random Processes

The following statistical characteristics of the theory of random functions
have been used to describe the structure of cloud and radiation fields and their
relationships:

E(t),n(t) --mathematical expectation of random processes (mean),

TE --autocorrelation function,
TEN --cross-correlation function,
DE(t) --structural function,
SE(w) --spectral density, /18
Sen(w) --reciprocal spectral density,
S(Xi), Xi --eigenvalues and eigenfunctions of correlation matrix K,
P,p --one-dimensional and two-dimensional probabilities and distribution
functions.

In proceésing of the results of experimental research in a Minsk-22 computer
the statistical characteristics of the random process were determined by the
discrete values of the latter forming a random sequence.

Algorithms for estimation of the characteristics of random sequences are
given below.

a. Mathematical expectation (mean) is expressed by:

&
2 &)
Frry . di=1
§(f)—————37—~*, (1.1)
where g(ti) is the value of the random process at the ith readout, and N the number
of consecutive readouts according to which the mean is taken.

b. Dispersion is found from the formula given in reference [1]:

o 1 X Friy 12 (
o= 2 [E(t)— &) I~ (1.2)

Vo=t

c. The normalized cross-correlation and autocorrelation functions rf and
rEn along the section of variation of the argument from 0 to MAt are obtained
from the formulas given in reference [1]:



re(kAt) _—z(—N‘—T)z [£(t)—ED 1) — D 1,

(1.3)
kAt L S et — D 1 ttn) —7(H ]

en( A)=m£[§ 1) Y (feen 7)-_ , (1.4)
where k = 0, 1, M and At is the interval between adjacent readouts %
d. The structural function is calculated from the formula given in reference /19 ;

[2]:
§(t)]1— ,
l N—,
- 7;[§(tu-k)—§uf)]}ﬂ. (1.5)

e. Before the spectral densities are calculated the correlation functions
are filtered by the Bartlett method [1,3,4]

r’(th)=( i .N_—/-I:’- )r(kdt),

(1.6)
where k = 1, . M,

The spectral densities and reciprocal densities based on the corresponding
autocorrelation and cross-correlation functlons are calculated from the formulas
given in [1,5]:

{ M-1
‘ S;(mdm)_—.—W[r;(O)+22r'(th)cosr11q4tda)+
. “ g=1
4-r*(M At)cos mM At 3w (1.7)
and in Sg,,(mAw)=A(mAm)+jB(mAw),
(1.8)
where At
A(m 40) =5 515(0) 173 0) 1+
et , (1.9)
+£[’an(¢74t)+’ns(qdl)cosqutdw—[—
l - L]
+—2-[rg,, (M ALY 4-roe (M Al) Jcos mM At_dm}
and B mA At M1 - . .
(mAw) “‘{?g [rm3(q 38) — ren(g A1) 1sinmg At Ao (1.10)

are respectively the real and imaginary parts of the spectral density, and
w=mAw is the circular frequency of the spectral density

In the present study




use is made of linear frequency f=w/27w along with the circular frequency. The /20
spectral densities for linear and circular frequencies are related by the equation

S(h=S[w(f) %‘f"—=2ﬂ3[m(f)1. (1.11)

The following auxiliary functions are employed to provide for interpretation of
the results of reciprocal spectral analysis:

(1) coherence C(w,:zfgifﬂjffﬁgﬂ)<
S Sylw) (1.12)

the value of which can be found over the range 0<C(w)< 1, and its behavior is
analogous to the behavior of the square of the ordinary correlation coefficient.

(2) phase characteristic

f(w)=—:)— arctg[B(w)/A(w) ], (1.13)

which makes it possible to trace the phase shift between two processes as a func-
tion of frequency.

f. In order to determine the parameters of the statistical structure of sky
brightness and cloud coverage of the direction of sighting as a function of the
zenith angle of observation # expansion has been made into a Fourier series _
on the base line system of orthogonal and normalized functions Xi(s), which yield
the optimum approximation of measurement of random function, £(#8) (see [6,7]).

In this instance eigenvalues S(Xi) represent dispersion of the corresponding
orthonormalized base line functions Xi(#).

The eigenfunctions and eigenvalues are obtained by solving integral equation

S(Xi)Xr(ﬂm) :Oj ;((0uh ﬂ‘(l) Xl(ﬁ(l) dﬂ% (1 . 14)

where K(¥m,8q) are the elements of correlation matrix K, i.e., the correlation
coefficients of the random function investigated in sighting directions #m and
0q. Expansion based on the orthonormalized eigenfunctions assures minimum dis- /21
persion of the residual term in comparison with other possible orthonormalized

functions.

The relative accuracy of expansion

o SSX)HS (X)) 4 ... +S (X))

T S(X)FS(Xe) . ESXD . S (Xm)
expresses the portion of total dispersion of the first i components in the total
dispersion of all m components. Research completed up to the present time has
shown that in the approximation of meteorological and radiation fields adequate

accuracy is achieved by means of the first few eigenfunctions. This remarkable
characteristic also explains their wide application in the solution of a great

variety of problems [8-16].
10

A (1.15)



g. One-dimensional and two-dimensional functions of probability distribu-
tion P(&;) and P(&;,£2) characterize the probability of events £(t)< £; and
E(t)<Ey, E(t+At) L&y, i.e.,

P(§1)=Pi'§(ﬂt)<§i]‘ (1.16)
P (&1, &, At) =PE(F) <1 E(F (HT)<—§;] (1.17)

where At is the shift of readout moments £(t). One-dimensional and two-dimensional
probability distribution functions are obtained by differentiating distribution
functions (1.16) and (1.17) respectively:

pit) = dl;(&) =P[§1<§(t) <&+AE] ’ (1.18)
- & A
___OP (§l) EZ: At)_ .
p(§‘r fz’dt) —W— '
P[§1<§(1)<§1+A§ E<E(IHAN) <EHTAE] (1.19)
(44)2 '

where Af is the quantization level interval.

In analysis of the statistical structure the cumulus cloud cover is also
characterized by the frequency of clouds or clear gaps, i.e., the average
number of clouds or clear gaps x per unit time in the case of ground measurements /22
or per unit length in the case of aircraft measurements:

_ Ku
x= lim 2. (1.20)

where K is the total number of clouds (or clear gaps) per measurement of dura-
tion M.

Section 3. Estimation of Dependablllty of Experimental Determlnathn of Cloud
and Radlatlon Characterlstlcs 1n a Real Atmosphere

Cloud and Radiation fields are considered to be locally homogeneous and in
certain instances also isotropic random fields (random processes). In this case
determination of the empirical statistical characteristics is based on utiliza-
tion of the well-known property of ergodicity.

Questions of statistical treatment of the results of measurement of cloud
and radiation characteristics, with allowance made for the statistical reliability
provided by measurements over a limited interval of time, will be considered in
what follows.

As will be demonstrated later, errors in determination of the statistical
characteristics of cloud and radiation fields depend on the duration of recording
(measurement) , the methods of processing the experimental data in a computer,
and the distortions occasioned by the array of measuring instruments.

11



The maximum scale (duration of recording) is determined by the extent of
cloud formations of different shapes; in our experimental studies it was
approximately 50-500 km in aircraft measurements or 1-4 hours in ground measure-
ments. The results of the experimental measurements were processed by computer
on the basis of the algorithms given in the second section of this chapter. In
this instance the quantization interval for ground measurement was At = 12 sec,
and for aircraft measurements, depending on the nature of variation in the
quantity studied, At = 0.5, 1, 2 sec. A spatial quantization interval Ax =

35, 70, 140 m corresponds to the latter.

For the purpose of quantitative estimation of errors in the statistical /23
characteristics obtained the dispersion and root mean square deviation and the
variation coefficients of the latter were determined, and for mathematical
expectation also the confidence intervals, effectiveness index, effective number
of measurements, and optimum quantization interval [17].

As is known [18,19], mean dispersion o-%—is determined by the expression

oy =%[N+2§'(N-—k)r(‘kz'itn, (1.21)

k=1

where N is the number of consecutive readouts in calculation of mathematical
expectation (See formula (1.1)). The normalized autocorrelation function in
calculations based on formula (1.21) is approximated by a function of the form

r(kAt)=éukAt‘

4}The dispersion range of root mean square deviations of for mean radiation
fluxes and the presence of clouds at the zen4th is plotted in Figure 1 against
averaging scale t or x for ground and aircraft measurements.

&

Qe

Figure 1. Root Mean Square Deviations of Mean Total Radiation Flux ( -- ) and
Mean Cloud Coverage of Zenith ( -- -- -- ) Versus a, Time Averaging Scale
(t min), b, Spatial Averaging Scale (x, km).

In the first approximation, if the distribution of deviations of mathematical
expectation estimation from the true normal expectatdon is considered, the con-
fidence intervals with probability P of mathematical expectation falling within

/24

12



a given interval [-Ag(P),+AE(P)] are calculated by the formula

AE(P)::a;argerLP. (1.22)

where arg arf is the value of the probability integral argument at which the
probability equals P. A confidence interval of probability P = 0.68 corresponds
to interval A-(0.68)=0c—, and for probability 0.90, 0.95, and 0.99 arg. erf P
assumes the Vglues respectively of 1.643, 1.960, and 2.576.

The mathematical expectation estimation is the more accurate, the smaller
is its dispersion relative to the mean. We employ the coefficient of variation
(relative root mean square error).

Vo=t | I ¢ OrX 5 )

as the measure of dispersion. The dispersion range of the coefficient of
variation is plotted against the averaging scale in Figure 2.

% "
3 3

Figure 2. Coefficients of Variation of Total Radiation ( -- } and Cloud Coverage
of Zenith ( -- -- -- ) Versus a, Time Averaging Scale (p, min), Spatial Averaging
Scale (x, km).

As may be seen from formula (1.23), the coefficient of variation depends /25
on the level of fluctuation relative to the mean as well as on the averaging. -
Hence for the purpose of quantitative estimation of the influence of averaging
on the accuracy of results use has been made of the effectiveness index

which indicates the share represented by mean dispersion in the dispersion of a
non-averaged random function. The reciprocal, Ne=1/Ke, is the effective number of

measurements indicating how many individual independent measurements must be per-
formed in order to achieve the same accuracy as when the mean arithmetic method of

13



treatment based on formula (1.1) is employed. The range of variation of
effectiveness index Ke with a scale of effective number of measurements Ne is

shown in Figure 3 plotted against the averaging scale.

Figure 3. Effectiveness Index Ke With Scale of Effective Number of Measurements
Ne of Mean Total Radiation Flux ( -- ) and Mean Cloud Coverage of Zenith

( -- -- --7) Versus a, Time Averaging Scale (t, min) b, Spatial Averaging Scale,
(x km).

As we know [18], with small averaging scales the effectiveness of mean
estimation depends on interval A between discrete readings. Hence in conducting
mass measurements it is advisable also to determine the optimum interval Aopt

further decrease in which leads to no appreciable increase in mean accuracy. The
optimum interval is determined in approximation from the equation [18] /26

5r(45%) 5 o=

In measurements of the mean total radiation flux the optimum interval between
readings ranges from 0.5 to 20 min or 0.4-7 km, and in measurement of the mean
values of intensity for cloud coverage of the direction of sighting from 1 to 3
min or from 0.5 to 1 km for ground and aircraft measurements respectively.

As is demonstrated by Figures 1-3, in measurements of radiation fluxes and
intensities_and with clouds present at the zenith, averaging over a range of no
less than 40 minutes in ground measurements or no less than 80 km in aircraft
measurements is required in order to achieve substantial increase in the accuracy
of their mean value. The same accuracy can be achieved by 5-10 independent ver-
tical atmosphere probes (see Figure 3), in which case independence is defined as
absence of correlation of the characteristics investigated for individual probes

Spatial and temporal averaging .or averaging by independent measurements makes
it possible to reduce the mean dispersion by an order of magnitude (the root
mean square deviation of the mean is reduced by a factor of 3-4) in comparison to
the instantaneous values (1.3). Considerable enlargement of the averaging scale
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is required for further substantial increase in the mean accuracy. This is
virtually impossible on the basis of a single measurement, since cloud fields

of an extent sufficient for these purposes are very rarely encountered under
natural conditions. This indicates a need for revising the approach toward
experimental measurements of the characteristics of clouds and radiation in the
atmosphere, and also to revise the goals set in advance of the experiment. For
example, the representative intensity and flux data employed in ‘theoretical
operations within the framework of the deterministic transfer theory can be ob-
tained by way of experiment only in the form of mean values. In the majority of
cases an accuracy which in effect can be achieved by averaging over a large number
of measurements (fields) is required for adjustment of the transfer theory to /27
experiments. As a result, the minute details of radiation fields ascertained

from the transfer theory cannot be confirmed quantitatively by full-scale measure-
ment.

Determination of the accuracy of estimation of dispersion (1.2) requires
knowledge of the correlation function of the square of the random process [18],
which function is fully defined by correlation function (1.3) only in the case of
a normal (Gaussian) random process. In view of the foregoing, dispersion cgg

of estimated dispersion o2
2 4 N-{ l
Oge= A‘/’ [H-QE(l——]V)rZ(kAt)], (1.24)

Ry

its relative error (variation coefficient)

Og?

Va="5" (1.25)

and the dispersion of the correlation function

2 — 2B AN 12
ozt‘A!)='a'R'(kA'“['l an_(.f_)_]__ (1.26)
in which
2 ot Non N N (7200 AL
UR(hAl)=*’(7V‘—‘_"'k‘)“z—' 2_%4;_”( —k— i) {r2(iat) +
+r{(i4-R)AL]r[ (i —k)Al]} (1.27)

is the dispersion of the non-normalized correlation function, have been calculated
on the basis of the assumption that the stationary random processes investigated
are normal.

The range of variation of dispersions o2, their dispersions 022, and the
range of variation coefficient qu for the total radiation flux and coverage of

the zenith with clouds or intensity for ground and aircraft measurements are
presented in Tables 1 and 2. Figure 4 shows typical correlation functions r(kAt), /28
their root mean square deviations T and variation coefficients Vr=cr(kAt)/r(kAt){
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As was to be expected, the dispersion and the correlation function as second fac-
tors are determined with much less accuracy than the mathematical expectation.
individual cases the dispersion error exceeds 100 percent, this clearly indicating
With the normalized correlation

that the measurement length is inadequate.
functions determined at r(kAt)<0.1l, the error is more than 100 percent.

TABLE 1. VARIABILITY OF DISPERSION IN GROUND MEASUREMENTS.

TABLE 2. VARIABILITY OF DISPERSION IN AIRCRAFT MEASUREMENTS.

] -

-3
-3
-3

60 3.14 10
120 307 10
o 180 3.05 10
60 0.098
120 0.093
180 0.091
60 0.092
120 0.091
180 0.090
r(0) 60 0.285
120 0.267
180 0.262
]
M (km) i g
50 787,
100 7.70
150 7.65
200 7.61
Q 50 7.48
100 6.92
150 6.75
200 6.65
50 0.247
100 0.244
150 0.242
200 0.242
2(0) 50 0.142
100 0.141
150 0.141
200 0.140

Structural functions, as well as sliding mean mathematical expectations and

2

10-3
10-3
10-3
10-3
10-3
10-3
10-3
10-3

ol

6.26
3.04
1.99
149
1.99
8.74
5.54
4.06

1.86
9.10
6.03
4.50
3.24
1.60
1.06
7.90

o2

10-3
10-3
10-3
10-3
10-3
10—¢
10—
10—+

10-3
10—+
10-4
10—+
10-4
10-4
10-¢
10-3

)

:
|

4.96
3.41
277
9.19
6.20
4.95

1.37
9.50
7.80
1.05
6.82
5.50

10—¢
10—
10-¢
10-2
10-2
10-2

10-2
10-3
10-3
10—t
10-2
10-2

Im

791
5.51
4.46
3.86
4.46
278
2.35
2.01

4.30
3.02
2.46
2,12
1.80
1.26
1.03
8.89

10-2
10-2
10-2
10-2
10-2
10-2
10-2
10-2

102
10-2
10-2
10-2
102
10-2
10-2
10-3

Ve

0.16
0.11
0.09
0.94
0.67
0.54

0.15
0.10

‘0.09

037
0.26
0.21

V

o2

0.21
0.15
0.12
0.11
0.12
0.09
0.07
0.06

0.174
0.124
0.102
0.088
0.127
0.089
0.073
0.063

dispersions, were utilized to estimate the stationary nature of the random pro-
For.stationary random processes DE(”)=202 the correlation /30
function as well may be expressed by means of structural function

cesses investigated.
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Figure 4. Correlation Functions r With Root Mean Square Deviations oL and Vari-
ation Coefficients Vr for Total Radiation Flux (a,c) and Cloud Coverage of Zenith

(b,d); a,b, Ground Measurements; c,d, Aircraft Measurements.

Utilization of the structural function is always more dependable, inasmuch
as the value of Dg(kAt) is not affected by error in determination of mean value
tt, which was not taken into account in formulas (1.24-1.27) in estimation of the
accuracy of dispersion and correlation functions. A constant structural function
with large values of argument kAt is an indicator of a stationary state.

In order to increase the effectiveness of estimation of the spectral density,
the correlation function is filtered by the Bartlett method (see (1.6)) before
the Fourier transformation is performed.

The accuracy of evaluation of spectral density is affected by the discrete
nature of the random function, as well as by the duration of measurement. Since
the time of measurement is finite, the spectral density is discrete. At the same
time, the spectral density values are generally too low. Since fixation of the
random process is discrete, the values obtained in estimation of spectral density
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are too high as a result of redistribution of the spectral density of the higher
frequencies over the estimated spectral densities of the lower frequencies.

H(f}

10

05 A

T v T T T

o ! 2 f

Figure 5. Spectral Characteristics H(f) of Filters: 1, According to Formula

(1.29) (A=12 sec); 2, for Thermoelectric Actinometer in Set with KBT Electronic
Potentiometer; 3, for Thermoelectric Pyranometer in Set with KBT Electronic .
Potentiometer; 4, for Narrow-angle Longwave Radiation Receiver in Set with F-18 ;
Amplifier and EPP-09 Electronic Potentiometer; 5, for Thermoelectric Pyranometer

in Set With POB-14 Oscillograph.

If the correlation function does not depend on displacement of the reading
points in measurement within the limits of fixation frequency At (the interval
between adjacent readouts is sufficiently small), the spectral density of the
continuous function is obtained by multiplying spectral density (1.7) arrived
at through discretization by filter function [20, 21]

Hat(f) =%§i (1.29)

As may be seen from Figure 5, discrete fixation of the process in the fre-
quency sector to be determined greatly increases the value of the spectral density,
the value being the greater, the higher is the frequency.

The minimum frequency for which it is reasonable to determine the spectrum
equals wmin=2n/MAt, where MAt is the time interval of determination of the corre-

lation function, while the maximum frequency according to the Kotel'nikov
theorem equaIS(umax=w/At [18, 19]. Thus the duration of measurement and the

reading frequency impose limits on the frequency range within which the spectral
density evaluation is made. At the same time, the evaluation of the spectral
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density of the higher frequencies is considerably overstated. On the basis of
measurement data the spectral density is determined within the frequency range
from 6m/MAt to m/2,5At.

In numerical processing of the results of experimental studies one cannot
dispense with quantization by levels as determined by the accuracy of reading
of the ordinates of the random process. In accordance with reference [22] (the
random process under consideration being assumed to be normal), the dispersion
of quantization noise is defined as 062§62/12, where § is the quantization inter- /32

val by levels, or 062=(8/c)2, and o is the root mean square deviation for the

random function. In the processing of automatic recording instrument tapes there
is virtually no correlation of quantization noise with a random process. As a
result, the dispersion of the random process is overstated by the value of dis-
persion of the quantization noise. In the spectral density the quantization
noise is distributed over the frequency and increases it. In view of the fact
that precise recording of quantization noise is difficult because the processes
being investigated may not always be assumed to be normal, and the distribution
of the noise in the spectral density by frequencies is unknown, in experimental
measurements it is necessary to make certain that their value is considerably
smaller than the errors depending on the nature of the random processes. In our
studies the quantization noise represented less than 0.5 percent of the dispersion
of the random process.

The distortion occasioned by the array of measuring equipment is determined
chiefly by the inertia of the radiation receivers and the recording system. The
random process measurements are accordingly smoothed out, with the result that
dispersion is reduced, correlation is improved, and the spectral density values
are correspondingly reduced. Inertial measuring equipment may be considered to
be a high-frequency filter [22,23]. Figure 5 illustrates the -frequency
characteristics of the equipment for spectral densities-demonstrating how
the spectral density is atténuated as a function of frequency owing to the
inertia of the equipment.

Once the frequency characteristic of the filter is known, a correction may
be made in the spectrum calculated on the basis of the experimental data and an
evaluation may be made in the spectrum calculated on the basis of the experimen-
tal data and an evaluation may be made of the true spectrum, dispersion, and
correlation function obtained as a result of analysis of the data of observations
based on an ideal inertialess instrument.

It follows from the foregoing that determination of the statistical parame-
ters of radiation and cloud fields by way of experiment entails considerable
errors. In addition, increase in the accuracy of their determination within the
limits of one concrete measurement is limited by the scales of the cloud for-
mations. Hence further increase in the accuracy of evaluation of statistical /33
parameters can be gchieved only by averaging the individual measurements obtained
under identical meteorological conditions. Hence statistical characteristics
based on average measurements are virtually the only ones employed in theoretical
analysis of the structure of cloud and radiation fields and their relationships.
We now have available to us 441 measurements suitable for analysis, 314 of which
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are based on cunulus clouds, and the remainder on clouds of various kinds, chiefly
those of the lower tier. .The results of 203 measurements (149 based on cumulus
clouds) were fully processed and utilized in the present project.

Section 4. Linear Conversions of Statistical Characteristics of Cloud -and
Radiation Fields, ‘ - '

In study of cloud and radiation structure use is often made of one or another
type of linear filtration, both deliberately and directly in measurement or in
the processing of experimental data (see preceding section), and consciously in
interpretation of the data, it.e., in search for relationships between the sta-
tistics of random functions related by a linear operator.

Various parameters have been employed in atmospheric physics to describe
both radiation properties and cloudiness conditions.

The basic radiation intensity, by which radiation fluxes, i.e., the spherical
flux density and the flux through a unit of area, are determined. The amount
of clouds over the sky and coverage in individual directions are utilized as
cloudiness parameters. In study of the statistical structure of radiation and
cloud fields establishment of the relationships among the various parameters both
of the radiation fields and of cloudiness represents an independent problem. The
statistical characteristics of parameters integrated on the basis of the
hemisphere, ones such as the amount of clouds, the density of the radiation flux,
etc. depend on the altitude of the clouds, or in the general case the distance to
them, since the area of a cloud formation covered by the averaging field is de- /34
termined by the altitude of the clouds. Hence in analysis of the structure of
cloud and radiation fields it is absolutely necessary to make a division between
the relationships determined by the structure itself of these fields and by their
transformation.

In the solution of many problems it is necessary to know the statistical
characteristics of cloud and radiation fields averaged over certain time intervals
or over space, along with the statistical relationships among the various para-
meters.

The relationship between radiation and cloudiness parameters is a linear or
nearly linear one. The radiation and cloud parameters associated with averaging
over time or space are also linear.

Let us now consider the relationships among dispersions, correlation functions,
and spectral densities in the case of linear transformation of random functions.

Two approaches, equally valid and closely related to each other, may be
applied to solve the problems assigned.

First of all, the relationships among the dispersions and correlation func-
tions of the parameters are calculated on the basis of the relationships between
the parameters in which allowance is made for the distance to the cloud cover. The
spectral density is found from the correlation function by means of the Fourier
transform,
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Secondly, the filter functions determining the relationships among the
spectral densities are calculated on the basis of the relationships among the
parameters, after which the relationships among the dispersions and correlation
functions are found by means of the inverse Fourier transform of the filtered
spectrum. In the solution of concrete problems the method is selected which
makes it possible to obtain results by the simplest means.

Let us consider linear conversions in greater detail.

The linear operators employed by us may be represented in the form
p()=[ult. L) E(t)dH (1.30)

where £(t) is the random function to which the linear operator in question is
applied, u(t,tl) is the assigned weighting function, the form of which determines

the properties of the operators, and Q is the integration region, i.e., the re-
gion within which weighting function u(t,tl) differs from zero, and y(t) is the /35

linearly transformed random function.

The probability characteristics of function y(t) are obtained very simply
within the framework of the correlation theory [19,23-25].

On the one hand, we obtain the mathematical expectation by applying the
linear operator to the mathematical expectation of the initial function

v () = [u@REEdh=E() [u(t. t)dh (1.31)

The dispersion and the correlation function of the linearly transformed random
process are obtained by applying the linear operator twice to the correlation
function of the initial random process

re(ts, ta) = [ u(ts ) u (b ) re (1, 27) A0 d”, (1.32)

and the spectral density for random function y(t) by Fourier transformation of
correlation function rw. On the other hand, by employing the contraction theorem

[19,26] and the definition of spectral density one can calculate the characteris-
tics of filters reflecting the relationships between the spectral densities of
function £(t) and y(t)

Se(w) =H () St (w). (1.33)

where H(w) =%(0)$" (w), (1.34)

and 9 (w)is the Fourier transform of weighted function u(t) normalized atw=0
zero, i.e., $(0) =1. Function H(w) is termed the filter frequency characteris-
tic. Correlation function rw(t) is calculated by means of the inverse Fourier

transform of spectral density Sw(w).
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It is to be noted that forced smoothing of a random process such as filtra-
tion due to the inertia of the detection and recording system (see end of pre-
ceding section) can be eliminated only by means of reverse filtration of the
spectral density:

Se(m)=%'i‘f’l-. (1.35)

In this instance the maximum frequency of restored spectral density is determined /36
by the noise level relative to spectrum S (w) The true dispersions and corre-

lation functions, as with direct flltratlon, are obtalned by means of the inverse
Fourier transform.

Formulas (1.30) - (1.35) given in the foregoing apply to one-dimensional
random functions. In reality the radiation and cloud fields of the Earth's
atmosphere are multidimensional random space-time functions (random fields).

The concept of random field is analogous to the concept of random function.
As in formulas (1.30) -- (1.35) the statistical characteristics of the random
field are also converted under the influence of the linear operator. For random
fields the correlation function, the weighting function, the spectral density,
and the integration region in formulas (1.30) -- (1.34) are replaced by the cor-
responding multidimensional characteristies [2]. To establish a relationship
between the space and the time structure of the cloud cover and the radiation
we employ the hypothesis of '"freezing' advanced by J. Taylor for turbulence [2];
according to this hypothesis, the space picture of a random field moves at the
average wind velocity and does not vary in time.

Since experimental studies of random fields have been conducted chiefly with
cross-sections, in analyzing the relationships among statistical characteristics
one must necessarily assume that the latter are isotropic. It is to be noted
that cross-sectional measurements of a random field yield a random function with
one variable, which is described by formulas (1.30) -- (1.34). If in the fil-
tration of spectral densities (1.33) the weighting function and the filter are
two-dimensional, filtered spectral density SZ€(w) must accordingly be two-

-dimensional as well. The latter is obtained by means of the two-dimensional
transform of the correlation function, which in the isotropic case amounts to
the Hankel transform /37

-+oo
1 )
Szt () =Wff re(l) e~iostoyy) dy dy —

00
- %f re(D) Jo(wl) L d1, (1.36)

where w=\/wx2+wy2 , 1=vxZe+yZ | and J0 is the zeroth order Bessel function. The

cross-sectional one-dimensional spectral density is obtained after linear trans-
formation of the random field, by integration of the two-dimensional spectral
density over one frequency component [2,27]:
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Sw(w)=flfkn(q)ﬁh(w)dmw (1.37)

Section 5. Nonlinear Relationships Between Random Cloud and Radiation Fields,

As we know, radiation interacting with the real atmosphere, scattered ra-
diation, and the properties of the atmosphere are related by an integral-
~differential radiative transfer equation. It is to be seen from the transfer
equation or approximation formulas that the light conditions in a light-dispersing
and absorbing medium is connected by a nonlinear relationship to the parameters
of the medium currently employed, the scattering and absorption coefficient, the
form of the indicatrices, and the optical thickness. Thus in analysis of the
relationships between the statistical parameters of the atmosphere (the cloud
cover in the first approximation) and radiation fields one cannot dispense with
nonlinear transformations of random fields (functions). It must be noted that
nonlinear transformations are much more complex than are the linear ones dis-
cussed in the preceding section. It is not enough for nonlinear transformations
to have knowledge only of the first two factors of the random function. At the
same time, calculation of the higher factors on the basis of experimental data
involves great difficulties because of the insufficient accuracy of the experiment
(see section 3). However, nonlinear transformations can be substantially sim-
plified if the initial random process may be considered to be normal. The /38
possibilities of modeling cloud and radiation fields by means of normal random
processes will be analyzed in the next section.

Of the nonlinear transformations of random processes use is made in the
present study of the simplest one, i.e., a transformation in which output!
function Y(t) is at any given instant determined only by filtered function £(t)
at the same instant. Such transformations are usually termed inertialess trans-
formations in statistical radio engineering [23].

Let us now proceed to more detailed examination of the inertialess neonlinear
transformations employed.

Probability densities are transformed with the formula

— dg
p(zp)—p(alw (1.38)
In transformation of two-dimensional or multidimensional probability densities,
derivative d£/d¢ in formula (1.38) is replaced the Jacobian transform. The
mathematical expectation, dispersion, and correlation function have been calcu-
lated by various methods [28,29]. Firstly, use being made of the nonlinear
relationships and probability densities the mathematical expectation, correlation
function, and dispersion have been calculated with the formulas

400
0w2=_°f° Vv (yp)dy —[y (1) ]2 (1.40)
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and
400 o0

re(f) =—— f fwnpzp(w:, 0 ) dyydg —[p (D 1, (1.41)

where t is the time shift of ordinates ¥; and.¥,.

Secondly, if the nonlinear relationships between random functions ¢=g(£) are
analytical functions in the vicinity of £=0, the factor method may be employed.
Expanding nonlinear relationship y=g(£) into a Maclauren series and taking from
the series the first term assuring the required accuracy, and then performing
statistical averaging, we obtain mathematical expectation /39

—_— - - (1.42) o
PO =20 T=artef (O +aF D + . .. +ad (D,

where ai are constant expansion coefficients.

The dispersion is obtained by squaring the expansion, averaging, and sub-
tracting the square of the mathematical expectation,

—_—
R

W= OO P=[Z e () P— [ Zag () I (1.43)

The correlation function is obtained as is the dispersion, by taking the
expansion for two moments in time

re (b ta) =— £ (1) zamgm(fo)—[za E () I (1.44)
0¢ i=0 m=0 1

It is to be seen from formulas (1.42) - (1.44) that the factors of transformed
process ¥ (t) include the higher factors of process £(t) which is to be transformed.
And it is this that represents the characteristic feature of nonlinear transfor-
mation. Only if £(t) is a normal random process are the higher factors expressed
by the factors of the first two orders [30]. In the general case the higher
factors are unknown and we are forced to restrict the series by including the first
two factors only. In concrete cases such a restriction may not correspond to
the required accuracy. In addition, the approximation error cannot be estimated
without the higher factors.

As with the linear transformations, in the nonlinear ones the method is
selected which makes it possible to obtain results by the simplest means.

Section 6. Modelling-Cloud and Radiation Fields by Means of Normal Random Processes

The methods which are linear in the first approximation and the nonlinear
methods of investigating random cloud and radiation fields, such as those described
in the preceding sections, are based on utilization of the first two factors of
random fields and thus do not go beyond the framework of spectral correlation
analysis. As will be demonstrated later (in Chapters III - V), an approach
such as this is entirely acceptable for the solution of many problems. However, /40
there are a large number of problems for the solution of which the apparatus of
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the correlation theory is found to be inadequate. Such problems include
primarily: (a) determination of the one-dimensional, two-dimensional, and
multidimensional probability densities of cloud coverage of directions of
sighting, (b) determination of the probability density of distribution of cloud
frequency, i.e., the number of clouds per unit interval, (c) more nearly correct
solution of nonlinear problems, etc. Solution of these and similar problems
occasions great difficulties for random processes. But even in this case, as
will be demonstrated later, success can be achieved by relatively simple means,
by restricting consideration to random processes possessing certain special
properties.

In reference [31] the hypothesis was advanced that cumulus clouds may be
described by means of a stationery Gaussian process. Stratiform clouds were
later described in [32,33] by means of a Gaussian process. Subsequent experimen-
tal and theoretical research demonstrated that the hypothesis advanced can be
successfully applied to varied description of the structure of cloud and

radiation fields, despite the fact that there are no grounds for assuming a

cloud cover to be strictly Gaussian [34]. As a result there has been constructed
and experimentally verified a theoretical model which in our opinion is suffi-
ciently complete for description of the structure of the cloud and radiation
fields of the real atmosphere. At the same time, the degree of detail of the
theoretical model we have constructed is fully in keeping with the information
on cloud structure available to us in the current stage of development of
experimental research.

Let us now proceed to a description of the model. We employ as the model a
random Gaussian surface bounded underneath at a certain level (Figure 6). Diagram
a in Figure 6 applies to variable cloudiness, in which the limitation level
excludes a considerable portion of the normal random surface from consideration,
while diagram b illustrates the case of an unbroken cloud cover, in which there

is a negligibly small probability that the cutoff level intersects the random /41

surface. At the same time, it is assumed that the nortion of the random suface
situated above the cutoff level is a theoretical fiction. With elevation of the
limitation level the amount of clouds decreases, a cloudless sky being obtained at
the limits, while the amount of clouds increases with lowering of the level, there
being obtained at the limit an unbroken cloud cover the thickness of which depends
on the depth of the limitation levels. Consequently one model covers all possible
cloud conditions of the Earth's atmosphere (from a clear sky to an unbroken cloud
cover).

Information on the dimensions of the bases of the clouds alone is required
for the solution of a large number of problems of great interest. In this case

the clouds can be conveniently approximated as rectangles (Figure 6 a). The /42

restricted normal process is consequently transformed into a relay signal
(rect-signal). There remains to be resolved the matter of the cloudiness para-
meter whose variability it is advisable to describe by means of the normal

random surface. As we know, the variability of the optical thickness of the
cloud cover is determined by the random variability of the altitude of the upper
and lower boundaries, moisture content, and both the vertical and the horizontal
microstructure, etc. In addition, we know from statistics that the probability
density of the sums of the terms, independent or only slightly dependent, whichk
play approximately the same role, approach the normal distribution law when their
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number is increased, regardless of the distribution laws obeyed by the terms

(A. M. Lyapunov's central limit theorem). In view of this fact, in our model

we assume that the optical thickness of the cloud cover, and in some cases of
cumulus clouds its vertical extent as well, represent a normal random process.
It has additionally been assumed that there is a linear relationship between the
optical thickness and the dimensions of the clouds. )
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Figure 6. Diagram of Normal Random Surface.

Because of mathematical considerations, in analyzing the structure of cumu-
lus clouds we are forced in individual cases to restrict ourselves to examination
of normal random processes the correlation function of which is of the form of a
damping exponent, i.e., the normal random process is at the same time a Markovian

one.

It is to be noted that limitation of the cloud cover by the plane underneath
is justified from the physical standpoint. The lower boundary of the cloud
cover, which is determined by the condensation level, undergoes but little change
in space. The bases of cumulus clouds are accordingly situated approximately
on one level, and the lower boundary of stratified clouds is much less variable

with altitude than is the upper one.
The chief advantages of the model constructed include the following possi-
bilities:

(1) Utilization of the results of the theory of dispersion of normal random
processes, which permits description of the structure of the cloud field from
various standpoints, in many instances by means of relatively simple analytical

expressions;
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(2) Establishment of relationships between the statistical characteristics /43

of radiation cloud fields;

(3) Experimental determination of the few initial parameters required which
are applied in the theory, such as the cutoff level, the dispersions of the normal
random surface and its derivative, and the correlation radius.

The justifiability of utilization of this model has been confirmed by the
quite good agreement between calculations based on the model and experimental
data, as well as by the slight variation in the parameters of the model from
measurement to measurement. The main results of calculations based on the model
and~comparison of the latter with experimental data are presented in Chapters III
and IV of the present study.

It is to be noted that the model constructed is not the only one possible.
It is virtually always possible to advance a number of other hypotheses which
agree to one extent or another with the experimental data.

For example, a model of cumulus clouds has been constructed by means of the
Poisson flux in {35,37], while in [38,39] various probability distribution func-
tions have been employed to describe the distribution of the optical thickness
of stratified clouds.

Modeling of cumulus clouds by means of the Poisson flux makes it possible
to solve a number of particular problems (such as decrease in cloudiness toward
the horizon), although such modeling is incorrect from the physical standpoint,
since in this case the individual cloud formations are assumed not to be corre-
lated with each other.

By means of probability densities differing from the normal it is possible
to ascertain the influence of variability of the optical thickness on the mean
radiation characteristics [38,39] and on the dispersion of the latter. At the
same time, the possibility is excluded of studying the relationships between
the spatial structures of cloud and radiation fields, since, aside from those
for normal processes, there are at the present time no prescribed and rigorous
methods making it possible to ascertain the relationships between two-dimensional
and multidimentional probability densities and the correlation function of the
random process.

The brief survey given in the foregoing of a model based on utilization
of normal random processes demonstrates that, while the cloud cover can be
approximated by a normal random process, in particular cases by a Markovian
process, the range of problems to be resolved is considerably broadened. At the
same time, a number of problems are relatively simple to solve.

Although quite good agreement is observed between the model and experimental
data, further experimental study of the cloud and radiation fields over the widest
possible range of variation of the cloud and radiation flux parameters is never-
theless required, since extrapolation beyond the limits of the region investi-
gated by experiments may lead to major errors. It is to be noted that the need
for refinement of the theoretical model constructed may arise only with subsequent
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elevation of the level of information on the structure of the cloud cover and
radiation parameters. The most promising approach in this instance appears to
be description of the optical thickness (cloud cover thickness) or any suitable
parameters of cloudiness or radiation by a random function which is unambi-
guously related by linear or nonlinear operators to normal functions or which
may be represented by multidimensional normal or Markovian processes.
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CHAPTER II. EQUIPMENT FOR STUDY OF VARIABILITY OF RADIATION AND CLOUD /45
FIELDS IN THE ATMOSPHERE IN TIME AND SPACE

Section 1. Introduction

Experimental studies of the variability of radiation and cloud fields in time
and space are impossible by means of the existing equipment usually employed in
physics of the atmosphere and generally designed for study of averaged energy
parameters. Transition from rigidly defined examination of the problem of radi-
ative transfer in a real atmosphere to statistical description of radiation and
cloud fields and their relationships sets specific requirements of its own on
-experiments as well. Above all this applies to the frequency characteristics
of -the entire measurement system, from the sensor to the recording apparatus.
The passband of the array of measuring instruments must correspond to the fre-
quency interval being investigated, and this sometimes creates certain difficul-
ties in the region of the high frequencies.

In studies of the variability of fields in space it is also necessary to
guarantee that the equipment will possess sufficient spatial resolving power,
that is, the optical systems must have a small field of view. This requirement
usually causes no fundamental difficulties, but renders the equipment cumbersome
and complex, and this in turn in some instances limits the possibilities of
employing individual instruments under field conditions, especially on moving
vehicles (aircraft and so forth). A general requirement in any measurements
followed by processing of the results by statistical methods is recording of the
data either in the form of a continuous recording, or in discrete form of a /46
frequency sufficient for the process being studied. The large amount of initial
material necessary for dependable determination of statistical characteristics
accompanied by maximum reduction of manual processing inevitably necessitates the
production of suitable equipment.

The statistical approach also makes certain concessions in the absolute
accuracy of measurements, instrument graduation, long-term stability of instru-
ment parameters, etc. This often makes it possible to conduct measurements with
the aid of relatively simple and readily accessible equipment.

In creating the array of equipment for the experimental aspect of the re-
search under consideration here we set the following as our chief aim: to
guarantee measurement of all the parameters required as initial ones for the
theoretical models, and for verification of one or another theoretical conclu-
sion, with instruments of the utmost simplicity and accessibility. This array
was created gradually in the course of work and was constantly improved as new
theoretical requirements and experimental possibilities made their appearance.
It has by now become obvious that certain instruments hold out no promise what-
ever and must be replaced by more modern ones, but for the sake of completeness
a description of them has nevertheless been included in the survey of equipment.
No discussion is devoted here to instruments which are in the development or
testing stage, or to instruments the data on which were not used by us in the pre-
sent study.
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Section 2. Equipment for Determination of Cloudiness Conditions

In order to establish the relationship between radiation field and cloudi-
ness parameters it is necessary to use equipment to determine these parameters.
The amount and shape of clouds as determined visually are unsuitable for this
purpose due to the insufficient information content and the large proportion of
subjectivity. Hence in our studies we have made use of the method of photo-
graphing the entire sky. This has been accomplished basically by means of a con- /47
vex spherical mirror [40]. Various equipment modifications and different -
photographing methods have been utilized, as a function of the concrete problem and
the nature of the cloud cover. If the problem has been solely that of obtaining
an objective representation of cloud conditions, the image has been photographed
from the spherical mirror on 35-millimeter film of the KM-2 type, usually through
a color filter of 0S-12 glass. Enlarged prints with a coordinate grid applied
during the positive process served as material for subsequent processing. The
grid was determined experimentally for all the optical systems employed, which
consist of a spherical mirror and a camera lens. The interval chosen between
individual photographs was 5 to 30 minutes. Processing of the photographs
obtained in this manner provided the possibility of determining the total number
of clouds, the zonal distribution of cloud coverage of the sky, and the variation
in cloudiness, as well as evaluation of the shapes of clouds. Of late an afocal
adaptor of the '"fish eye'" type has been used for these purposes, so that the
entire unit is small in size and low in weight.

More detailed information on the variation and displacement of the cloud
field has been found to be necessary in some projects., In such cases use has
been made of time-lapse moving picture filming with 16-millimeter black-and-white,
OCh-45 film, gernerally with an interval of six seconds. Selected frames have
been projected onto a screen having a coordinate grid for the purpose of pro-
cessing of the frames. ’

In ground measurements the variability of the radiation field is determined
both by the nature of the cloud cover and by the rate of its displacement above
the point of observation. In all experiments determination has been made of the
angular velocity of displacement of clouds in the area around the zenith. For
this purpose we have used a simple device consisting of a lens having a focal
distance of 210 mm the optical axis of which was oriented toward the zenith,
from a plane mirror at an angle of 45° to the optical axis, and matte glass
situated vertically in the focal plane and having a coordinate grid applied to
it. By observing the displacement of the image of any point of a cloud through
the zenith and by fixing the time it requires to pass through a certain angular
distance one can determine the rate of cloud movement easily and with sufficient /48

accuracy.

It is to be noted that for more detailed study of cloudiness characteristics
use has been made of narrow-angle radiation detectors produced especially for
this purpose. A description of these detectors is given in the following

sections.
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Section 3. Equipment for Sky Brightness Measurement

The array of narrow-angle radiation detectors is used for studies of two
kinds:

(1) determination of the relationships between sky brightness in a particu-
lar direction and the radiation flux;

(2) determination of cloudiness conditions in the direction of sighting.
The following instruments were employed, depending on the specific problem:

a. A narrow-angle detector of integral shortwave radiation based on the
sensing element (thermopile) of the Linke-Feussner actinometer with the addition
of a glass lens optical system. The optical system provides a viewing angle of
the order of 1° for the instrument. The spectral sensitivity range of the in-
strument is determined by the transmission of the glass; the possibility has
been provided of using glass or interference light filters. The output signal
of the instrument is amplified by an F-18 amplifier and recorded by an EPP-09
electron potentiometer.

b. Narrow-angle spectral detectors of shortwave radiation of various types.
A diagram of the latest modification of a general-purpose ground instrument per-
mitting the conduct of measurements in accordance with various programs is
presented in Figure 7. The instrument consists of a lens with the cathode of an
FEU-22 photomultiplier placed in its focal plane. Diaphram 2 determines the
viewing angle of the instrument, which in our measurements was 30'. Disc 3 with
interference light filters can be rotated by electric motor Ml. Use was made
of interference light filters with passband centers of 420, 707, and 723 mm. The
instrument has an attachment for sky scanning which consists of a plane scanning
mirror 5, which is rotated by electric motor M2 at a rate of 180° in two minutes.
The output signal amplified by a direct-current amplifier and recorded by an

/49

EPP-09 or directly by an EPPV-60. The instrument permits the conduct of observation

in three modes:

(1) Measurement of brightness in one specific direction and spectral inter-
val; in this case the disc with filters and scanning mirror are stationary;

(2) Measurement of spectral brightness in one direction but consecutively
in three spectral intervals; in this case the disc with filters rotates and
mirror 5 is stationary;

(3) Sky scanning within the limits of 180°; mirror 5 rotates, while the
disc with filters is stationary.

A simplified narrow-angle spectral detector the diagram of which is presented

in Figure 8 has been produced for aircraft measurements. The instrument consists
of a lens 3 with a focal distance of 52 mm which projects an image through dia-
gram 4 onto one of sensing elements 5. There are additionally in the path of
the rays a glass light filter 2 and light filter 1 to reduce the effect of the
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radiation scattered within the instrument. Either germanium photodiodes of the
FD-3 type or FD-K silicon photodiodes operating in the photogalvanic mode were
used as the sensing elements. In order to reduce the demendence of the dark flow
of the photodiodes on temperature use was made of a differential measurement
circuit, for which purpose two photodiodes identical in parameters and connected
in opposition to each other were placed side by side in good thermal contact, one
of them being shielded against radiation. The glass light filter serves to
improve the spectral characteristics of the photodioe somewhat, so that a con-
trast of 2 to 10 is achieved between clear sky brightness and clouds, depending
on the shape and thickness of the clouds. Curves of the spectral sensitivity

of the photodiodes of the FD-3 and FD-K types with and without the 0S-12 glass
light filter are presented in Figures 9 and 10.

Figure 7. Diagram of Narrow-angle Spectral
Radiation Detector: 1, Lens; 2, Diaphragm;

3, Rotating Disc; 4, Interference Light Filter;
5, Scanning Mirror.

The signal from the detector comes to the input of a transistorized direct- /50
-current differential amplifier constructed on the basis of the example of the
tensometric amplifier described in [41]. The amplifier receives its power from
the aircraft power supply system through a transistorized voltage stabilizer.

The output voltage is recorded by a K-4-21 or POB-14 loop oscillograph at a tape
advance rate of 0.5 to 2 mm/sec. A block diagram of the narrow-angle aircraft
measuring system with two detectors oriented upward and downward is given in

Figure 11.

In addition to the narrow-angle instrument systems operating in the visible /52
or near infrared region of the spectrum, use is also made of instruments for
determination of brightness in the region of longwave (thermal) radiation. All
these instruments are identical in optical system and design, differing only in
the thermopiles and filters employed.. A mirror optical system (Fig.12) and sensing
element 1 are mounted in a solid housing of a material possessing good thermal
conductivity and thermal insulation. The mirror and housing are heated slightly
by heater 3 to prevent the formation of dew in nighttime measurements. The out-
put signal is amplified by an F-18 amplifier and recorded by an EPP-09 electron
potentiometer. The viewing angle of the longwave instrument is of the order of 1°,
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Figure 8. Diagram of Narrow-Angle Air-
craft Radiation Detector: 1, Inlet
Diaphragm; 2, Light Filter; 3, Lens;

4, Diaphragm; 5, Photodiodes.

S0y
01
[
Q54 ]
]
[
'
'
]
'
11}
]
’
J
0 0 20 A

Figure 10. Relative Spectral Sensitivi-
ty of Narrow-Angle Aircraft Radiation
Detector With FD~K Photodiode Equipped
With 0S-12 Light Filter (Solid Curve)
and Without the Filter (Broken-Line
Curve).
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Figure 9. Relative Spectral Sensitivi-
ty of Narrow-Angle Aircraft Radiation
Detector With FD-3 Photodiode Equipped
With 0S-12 Light Filter (Solid Curve)
and Without the Light Filter (Broken-
-Line Curve).
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Figure 11. Diagram of Aircraft Bright-
ness Measurement System: 1, Radiation
Detector; 2, Differential Direct-Current
Amplifier; 3, Loop Oscillograph; 4,
Voltage Stabilizer.

33



Thermopiles developed specifically for the purpose are used as the radiation
detectors in the longwave instrument. The diagram of a thermopile for integral
thermal radiation is presented in Figure 13. The thermopile consists of a
thermopile housing 6 and 7 of latten brass incorporating frame 5 in good thermal
contact. 50-60Tturns of insulated constantan wire 4 0.06 mm in diameter are
wound on the latter. To form the thermopile, sections 2 or the constantan wire
are stripped of insulation and have a layer of copper applied to them by
electrolytic means. The detector has two inlet apertures located side by side
above the thermopile juncture. Both apertures are covered by a germanium filter
3. To cut off the end of the spectrum of shortwave radiation passed by the
germanium, one of the apertures is additionally provided with a glass filter 1.
The spectral characteristics of the detectors described with and without the
compensating glass filter are shown in Figure 14.

Passband interference filters were employed for measurements in narrow /54
spectral thermal radiation intervals, generally in the water vapor ''window' of
8-12 u. In this case the thermopile is somewhat different in design (Figure 15).
It has (1) only one inlet aperture, behind which is light filter 1, (2) a com-
pensating plate 6 of the same thermal inertia as the filter used to reduce the
zero drift on change in the detector temperature, and (3) the thermocouple
junctions in a different arrangement.

In both instances the thermocouples are coated with black matte optical
varnish manufactured by Parsons. The external surfaces of the housing are
polished and nickleplated to reduce radiative heat exchange between the instru-
ment and the surrounding atmosphere. In the course of the work both detector
modifications, and especially the first one, exhibited very good zero stability
and proved themselves to be useful. The time constant varied somewhat from set
to set, but did not exceed tenths of a second; this fully meets the requirements
for ground measurements.

Section 4. High-Speed Radiometer and Results of Testing of Mercury-Alloyed /55
Germanium Radiation Detector.! —

High-speed equipment. of high spatial resolving power and high sensitivity
is reqguired for solution of various kinds of problems associated with investiga-
tion of the radiation structure of various cloud transformations. In the building
of such equipment more rigid requirements are also generally set for measurement
accuracy, and this necessitates knowledge of the additional parameters of various

elements of the equipment.

In what follows a description is given of a high-speed radiometer-pyrometer /56
for measurement of small fluctuations in the radiation temperature or brightness
of various natural formations, including clouds.

The results of testing of a Ge:Hg (mercury-alloyed germanium) radiation
detector cooled by solid nitrogen (51°K) are cited for the purpose of evaluation
of instrument accuracy. = o o o
IThe authors wish to express their thanks to B. M. Rogov for assistance rendered
in the work.
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Figure 13. ‘thermopile for Measurement
Figure 12. Diagram of Thermal Radia- of Integral Thermal Radiation: 1,
tion Brightness Measurement: 1, Ra- Glass Compensating Filter; 2, Portion
diation Detector; 2, Lens; 3, Heater. of Thermopile Coated With Copper;
3, Germanium Light Filter; 4, Constan-
tan Wire; 5, Frame; 6, 7, Housing.
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Figure 14. Relative Spectral Sensitivity
of Integral Thermal Radiation Detector
With Compensating Filter (Solid Curve) and
Without it (Broken-Line Curve).

Although the rating is usually taken as a basis in selection of the radia-
tion detector, in a number of cases more detailed additional information is
needed on its parameters, ones such as the variation in the threshold and volt
sensitivity and resistance of the detector as a function of the value of unmod-
ulated radiation created by the internal elements of the instrument, the
linearity of the voltage characteristic, the behavior of the signal-noise ratio
as a function of the frequency of modulated radiation, the variation in sensi-
tivity with the degree of cooling of the sensing element, and the capacity for
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detection of bodies of various temperatures. Let us consider some of these
parameters.

A. Influence of Unmodulated Radi--
ation on Detector Parameters

l

|
f ' 2

l N 3 The detector is always subjected
DL AR to the influence of radiation fields,
AR I A which vary widely from case to case,

Reports have been published in the

literature [42-45] on study of the

b VA ., ©xposure characteristics of receivers
s 7 W of PbTe, InSb, PbSe, and PbS. The
S A L results of similar study of a Ge:Hg

7

)
42%%%;7

detector cooled by solid nitrogen to
51°K are presented in what follows.

The influence of unmodulated ra-

Figure 15. Thermopile for Spectral s

Megsurements of Loﬁgwave Radgation' diation, exposure, on the parameters

1. Interference Light Filter: 2 Pér- of the detectors was determined by the
2 18 - . procedure described in [42,43,45].

tion of Thermopile Coated With Copper; Thi ] . . !

3, Constantan Wire; 4, Frame; 5 and s procedure consists In using an

7’ Housing; 6 Com,en;ating ﬁlate absolute black body or tape lamp with
’ > P ’ radiation of known spectral distribu-

tion (in our case a black body at a
temperature of 700°K) for imitation of the exposure. The unmodulated radiation
value was established by reducing the flux from the radiator and by varying the /57
distance between the source and the radiation detector. T

Another black body the flux from which did not vary in magnitude during the
experiment was used as the source of modulated radiation. The effect of exposure
on the parameters of a Ge:Hg radiation detector cooled by solid nitrogen to
51 + 1°K is noted in [46], in which study was made of 3 models the threshold
sensitivity of which does not differ by more than 40%. Diaphragms cooled by
solid and liquid nitrogen were used in the detectors to reduce the influence
of the initial background exposure. It is noted in this paper that on change
in the effective exposure EO efffrom 1.1 « 107% to 8.8 + 107"“w the voltage
sensitivity of the various detectors was reduced by a factor of 1.54, and the
threshold sensitivity deteriorated by a factor of 1.5 to 3. Additional results
have been produced with viewing angles of 0.012 steradian formed by diaphragnms
cooled by solid and liquid nitrogen. The equipment and the procedure of the
experiment are described in [46]. The value of the effective initial background
exposure active at an angle of 0.012 steradian, as converted to terms of radia-
tion of an absolute black body of a temperature of 298°K (the background tempera-
ture at which the experiment was conducted), was calculated from the formula

.6 [ . 2.1
E,, eff=sm2—2—-b/- r,(298°) S () dA, (2.1)
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and the value of exposure from a 700°K source was calculated from the formulas

2.2
Eett o-w=-232- [ r,(700°) S (3)da, (2.2)
ry (2.3)
Eqgt s-w=—230- [ 1(7009 S (2) We ()44,
]
where E are the effective initial and additional /58

exposures in w/cm active in the spectral angles of 2-14 and 8-14 u; 8 is the view=~
ing angle of the radiation detector: T, (298°) and T, (700°) are the spectral

densities of radiation of a black body having temperatures of 298 and 700°K;
S(\) is the relative spectral sensitivity of a radiation detector having a window
of coated germanium; W}(A) is the spectral function of the filter transmission

coefficient; is the area of the black body diaphragm; and L is the distance

Ebb
between the black body diaphragm and the sensing area of the detector.

The radiation of the cooled diaphragms and the deviation from the inverse
square law due to atmospheric absorption were not taken into account in (2.2)
and (2.3).

Verification of the stability of the black body temperature by means of
thermocouples cannot be accomplished with high accuracy, so that the extent of
cooling of the sensing elements was determined on the basis of its resistance,
which at EO,eff remained constant during the experiment. The graphs in Figures

16 and 17 show the behavior of the relative voltage S/S0 and threshold s/eo sen-

sitivities as a function of the exposure value. In Figure 16 the voltage sensiti-
vity is also plotted against the temperature of the background active in the
aperture angle of the detector for spectrum ranges of 10-11.15 (curve 1) and

8-13 u (curve 2).

We know that for extrinsic semiconductors under conditions of background
exposure the relative voltage and threshold sensitivities for a backgound-
-limited detector are defined as

S/So=Eqeff [Eetf, &leo==(Eectf/Eo ctf)'" (2.4)

where S0 €y are the voltage and threshold sensitivities for initial exposure
3
E0 off: and S, ¢ are the voltage and threshold sensitivities for various values
R >

Eeff.

In the graphs in question the S/S0 and e/eo differ somewhat from the rela-
tionship described in the foregoing. This difference is apparently due to the

fact that the optimum cooling temperature for a Ge:Hg detector is not 51°K but
is within the range of 30 to 35°K (see [47,48]). It should be observed that the
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behavior of the relative. threshold sensitivity of radiation detectors (curve 1 /60
in Figure 17) differs but little from that calculated on the basis of equation

2E[N——N Lnv (_.A_E_) ; X G
o0 WeNa) VoV exp( — 7 +S’deﬂ(v)1¢tsin’-2—] (2.5
‘Pr(v)jc ¥t ' '
where EO is the integral flux from the black body in w; Na Na is the concentration
of acceptors and donors in the sample, N - N = (4-5) 101% em™3; N is the
a a v 3/2

effective density of the states in the valence zone, N ~ 1.17 - 1015 (1)

cm'z; 1 is the distance between the black body diaphragm and the radiation detec-
tors; AE is the level of ionization energy, AE = 0.087 ev; V is the volume of
the samnle; k is the Boltzmann constant; T is the temperature of the sensing
element; NV is the quantum efficiency; T is the lifetime of the carrier; jbjm is

the current density of the quanta from the background and the modulated radiation
source.

' 0 20 %0 F2r iei&_;
298 400 500 600 700 ToX
Figure 16. Voltage Sensitivity S/So Versus
Exposure (Background Temperature) at E
’ 4 0,eff

= 1.67 X 100" w * cm. First detector,
broken-line curve; second detector, solid
curve; 1, AX = 10-11.5 u; 2, AX = 8-14 yu;
3, A = 2-14 y,

Calculations based on equation (2.5) with the model parameters and experi-
mental conditions illustrated demonstrate that the threshold sensitivity due to
the effect of exposure varies with variation in the limited background of the
detector. The behavior of S/S0 and e/eo as a function of Eeff(8—l4) permits the

conclusion that when use is made of a detector having a viewing angle of 26-28°
(to the lens of the radiometer) the influence of the unmodulated radiation of
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the instrument elements on the parameters of the Ge:Hg detector over the
operating temperature range of the radiometer-pyrometer from -30 to +50°C may be
virtually eliminated. In operation with a radiometer using a filter with a pass-
band of 10-11.5 p the detector parameters were found to remain unchanged over a
wider range of operating temperatures. The.results obtained prove one of the
advantages of quantum radiation detectors over the thermal ones, which are sensi-
tive both to modulated and to unmodulated radiation. :

&

k [

20 1

20 T sokeff
Eqeff

Figure 17. Threshold Sensitivity e/eo Versus

Exposure; 1, Theoretical Curve; 2, First De-
tector; 3, Second Detector

B. Study of Linearity of Watt-Voltage Detector Characteristic

The watt-voltage characteristic is directly related to the amount of free
current carriers of the sensing element. The influence of unmodulated radiation
on the parameters of the Ge:Hg detector to some extent also explains the
linearity of the watt-voltage characteristic.

In what follows we shall restrict ourselves to the results of experiments
confirming the considerable dynamic range of the detector, since determination
of the relationship of the latter to the exposure characteristics (see equation
2.5) goes beyond the framework of the present study.

A black body of adjustable temperature was used to imitate the modulated
radiation. The flux value ranged from 10 % watts, this exceeding the power
equivalent to the detector noise, to 107 % watts; the unmodulated radiation re-

mained constant.

In Figure 18 the voltage at the detector output is plotted against the
modulated flux value E calculated from the formula

£ ek ( f A(Ta)S ()42 — f (298 (4)d2). (2.6)
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where rx(Tn) is the spectral density of black body radiation at various tempera- /62

tures Tn; Ty (298°) is the spectral density of modulator radiation at a tempera-

ture of 298°K; Gde is the area of the sensing element of the radiation detector.
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Figure 18. Watt-Voltage Characteristics of Ge:Hg Detectors.

It is to be seen from Figure 18 that the detectors in question possess
sufficiently high linearity over the radiation flux range indicated.

C. Determination of Ge:Hg Detector Sensitivity as a Function of Degree

of Cooling

The basic error in measurement of cloud radiation results from the tempera-
ture instability of the detector sensing element. In order to reduce measurement
errors in the processing of results it is necessary to introduce a correction for
variation in the detector sensitivity. As was observed earlier, monitoring of
the crystal temperature by means of thermocouples or thermistors does not yield
a high accuracy. For this reason the instability of the detector sensitivity
was monitored on the basis of the resistance of its sensing elements, by means

of an M-95 instrument.

The resistance of the detector sensing element was varied by evacuation of
nitrogen vapor from a Dewar flask with a VN-461 pump. At the end
of the cycle of operation of the radiation detector, when its resistance was slow-
1y decreasing, measurement was made of the sensitivity at various resistance
values of the element. The load resistance remained constant in this case for
each detector. This method was employed to determine the sensitivity as a func-
tion of element resistance in three radiation detectors of special design. These

detectors were used in the radiometer.

In Figure 19 the relative threshold sensitivity e/eO is plotted against the

relative variation in resistance R/RO, with E0 off ~ const. A variation in

3
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element resistance no greater than 15% was permitted in cloud formation measure-
ments, a correction factor being introduced in processing of the results for
every 3% of variation in resistance.
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Figure 19. Watt-Voltage Sensitivity of Detectors
Versus Variation in Detector Resistance

D. Determination of Detection Power of Ge:Hg Detector /63

The photon noise generated by any radiating body is known to impose limits
on the detection power of a radiation detector [47,48]. Cooling of the internal
parts of the detector is sometimes employed to reduce this noise; cooled filters
and diaphragms are inserted which 1limit the aperture angle, since the detection
power of a detector limited by noise is defined by the formula

. 1 .
(e)=_“—TD (m), (2.7)
sin2-——

2
where D*(m) is the detection power of a detector having an aperture angle 7.

When infrared detectors are used allowance must be made for the difference /64
between thermal and photon detectors, since the former react to the intensity of
radiation but the latter to the rate of photon absorption. Thermal detectors
have a spectral detection power D* equaling detection power D* for total black
body radiation of any temperature, that is, DA?=D* (T,f,Af). This realtionship

may not be satisfied for photon infrared radiation detectors. Hence knowledge
of the detection power especially for low-temperature bodies is required for
selective infrared detectors, ones such as detectors of Ge:Zn, Ge:Cu, Ge:Cd,
Ge:Hg, and others.
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The relationship of detection power D* for the total flux from a black body
to the detection power based on the wavelength spectrum D* is according to [47]
defined for a detector limited by photon noise by the formula

_DyG, (2.8)
with
om 2o B2
. aln (o) T exp(52nc)
" 2ﬂ‘/'h'/'voz(sz)'/'[1+2kT’ +2(%§)']"' '

where'vO is the photon equation, defining the longwave boundary of the infrared
detector; o is the velocity of light; k is the Boltzmann constant; h is the

Planck constant; o is the Stefan-Boltzmann constant; Tl’ T2 are the temperatures
of an absolute black body and the background; and n(vo) is the quantum efficiency

(assumed in the calculation to equal unity).

With the background and black body temperature and the longwave detector
known, one can determine with sufficient accuracy D* (Tn,f,Af) for black bodies

of varying temperatures T provided that hv0 > le and h.y0 ? kT2.

Inasmuch as the detectors in question have an aperture angle of 26-28° and
'a cooling temperature of 51 + 1°K, this being somewhat higher than the optimum

[47,48], and n(vo) depends on the wavelength and is always smaller than unity,

the equation given above may cause considerable errors in determination of D*,

Hence additional study of D* for low-temperature bodies for determination of /65
measurement error is of practical importance because of the fact that the radi- =~
ation of a cloudless sky, say in the "water vapor window" of 8-12 u, may have a
radiation temperature of the order of 180°K [49].

Various standards, black body models, are generally employed for comparison
and determination of D*. Utilization factor q is introduced in determination of
detection power D*, No work has been done on the basis of our information for
determination of D* (Tn,f,Af) of longwave radiation detectors for bodies having

temperatures 200-300°K. We present the results of an experiment for determina-

tion of D* for black bodies of a temperature of 200-500°K with a Ge:Hg infrared
detector cooled by solid nitrogen. The test unit with which the experiment was
conducted is illustrated in Figure 20. The black body model 1 was represented

by a disc blackened with carbon black and placed in a case with a heat-insulating
jacket. The inner surfaces of the case and the surfaces of the disc were of a
degree of blackness b(X) > 0.99 in the range up to 15 u as calculated on the /66
basis of [50-51]. Vapors of liquid nitrogen were introduced into the interior

of the case under low pressure. The rate of vapor flow was varied in order to
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vary the temperature of the black body over the range of 200-298°K. Even cooling
of the radiating disc was achieved by rotating the latter at a rate of 6000 rpm.
The flow from the cooled black body was interrupted by modulator II of a frequency
of 900 Hz similar in construction to black body I. The modulator was at a con-
stant temperature of 180°K. The temperature of the black body and the modulator

were checked by means of T1-15 petroleum ether thermometers graduated in the
same medium.
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Figure 20. Block Diagram of Test Unit: I, Model of
Absolute Black Body; II, Model of Absolute Black Mo-
dulator; 1, Radiation Detector; 2, Preamplifier; 3,
V6-2 Selective Millivoltmeter; 4, ENO-1 Oscillograph;
5, Screen; 6, Diaphragm; 7, Heat-Insulating Jacket;
8, Rotating Disc with Blades; 9, Thermometer.

The low-temperature black body was replaced by a high-temperature heated
one for determination of the detection power of Ge:Hg detectors or black bodies
of a temperature of 298 to 500°K. The temperature of the black bodies was kept
accurate to within 0.5°. The detector, modulator, black body, and diaphragm were
arranged in such a way that the flux from the black body only was modulated. In
order to make certain that the unmodulated background radiation would be constant,
there was placed between the detector and the modulator a screen having an opening
through which only modulated radiation passed. During the experiment the screen
was at an ambient temperature of 298°, The signal from the detector was ampli-
fied by a preamplifier having an input resistance of Rin = 5.7 millohm and was

fed to a V6-2 selective millivolt-meter with a band of Af = 180 Hz. An ENO-1
oscillograph was employed for visual observation of the signal and noise. The
study was conducted with two detectors, the cooling temperature of which was
checked on the basis of their resistance. The detection power for bodies of
different temperatures was calculated from the formulas
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D*(Tx, 900, 1) =— ‘w; —_—,
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where D* (Tn, 900, 1) is the detection power of the detector for the total flux

. * *
from a black body of temperature Tn, D (2—14)(Tn’ 900, 1), D (8~14)(Tn’ 900, 1)

is the detection power for the effective flux from a black body of a temperature
Tn over spectral ranges 2-14 and 8-14 u respectively; Tn is the black body tempera-

ture, which ranges from 200 to 500°K; T, (180°), Ty (Tn) is the spectral density

of radiation of a black body of a temperature of 180°K and T 0; U, U
n s s(8-14),

and Un are the signal voltages caused by the total and spectral fluxes, and the

noise voltage, respectively, at the output of the V6-2 amplifier.

In the caluculations of D*, D* and D* the integrals were re-
(2-14) (8-14)

placed with sums with a summation interval of 0.1 p; the radiative flux losses
in the absorption bands of the atmosphere were disregarded. Calculations of
rA(Tn)’ rk(180°) over the temperature range from 180 to 300°k at intervals

of AT=5°K were performed by means of a BESM-4 computer and reference tables [52].
The averaged results of the study are presented in Figure 21. A certain increase
in the relative detection power for low-temperature radiation is to be observed
in the graph. This unexpected aspect was verified in twelve experiments, the
nature of the behavior of D*(2_14) and D*(8—14) being repeated in each of them.

The slight increase in D*(2_14) and D*(8—14) may be ascribed to the difference in

the radiation factor of the black body or modulator from unity. Thus with a
radiation factor b(x) = 0.99 the radiation from the surrounding background not
absorbed by the black body (298°K) may lead to an error of 6.4% in determination

of D*(8—14) (213°, 900, 1). The temperature instability of the modulator and /68

black body, which equals 0.5°, may also lead to an error of 4-5% in determination
of the detection power for black body radiation at a temperature of 213°K. Thus
the anticipated total error may be ascribed both to the former and to the latter

. . . . * .
assumption; the latter is less probable, inasmuch as D (2-14) and D (8_14)m1ght
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decrease as well as increase. A third assumption regarding increase in the detec-
tion power for low-temperature radiation, that advanced in [47] and consisting

in allowance for the relative number of photons per watt of power from radiation
sources of different temperatures, cannot be accepted, since the cooling tempera-
ture of a Ge:Hg detector is 51°K rather than 30-35°K, and the longwave threshold
of the detector equals 14 u rather than 18 u (a detector with a longwave limit

of 18 u can perform identical detection of radiation sources of a temperature
both of 500°K and of 290°K in noise from a background of 290°K [47]). In determi-
nation of D* and D*(8—14) allowance was made for the effective rather than

(2-14)
the total flux. Hence only the first two assumptions can account for the increase

in detecting power.

o*(r)
D' (200°)

. — s = — A— —— — — — —— —

09 4

400

B

300 Tk

200

Figure 21. Detector Detection Power Versus Radiation
Source Temperature. First detector: dot-and-dash curve;
second detector: solid-line curve; 1, for AA=8-14 yu; 2,
for AX=2-14 yu.

The variation in the utilization factor calculated for spectral regions of
2-14 p and 8-14 u and temperatures from 200 to 900°K is illustrated in Figure 22.
To determine the relationshin of D*, D*(2_14), and D*(8—14) the utilization fac-

tor was calculated with the formulas

FrT.)sayda -—}?r;.(ISO")S(l)dA
0

Jo-to=" o . , (2.12)
STy di = [ 1a180°) di
0
FrTa)S(A) tWa (2)da — [ 1 (180°)S (A) W (1) dA
o 0
q(5—10= - (2.13)

ffx(Tn)dx—fn(lso")d;{

For the sake of comparison the behavior of q for a PbTe infrared detector
cooled by liquid nitrogen [44] is illustrated in Figure 22. The comparison
presented is that for a detector having an averaged spectral sensitivity
characteristic. The behavior of factors q for Ge:Hg and PbTe detectors may be
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utilized to solve practical problems relating to optimum indication of bodies of
various temperatures. The maximum utilization factor, q = 0.39-0.40, corresponds
for Ge:Hg detectors to temperatures of 430-480°K. In the case of detection of a
flux distributed over the entire spectral band of the detector in accordance with
the law of black body radiation distribution it may be inferred that for the
indication of bodies having a temperature of 450°K and below it is advisable to
use infrared detectors operating in the water-vapor window of 8-13 p, and Ge:Hg
and Ge:Zn detectors in particular.

1(7)
04 -

= Y = LA

200 400 600 800 T

Figure 22. Utilization Factor q(T) of Various Detectors
Versus Radiation Source Temperature.

E. Selection of Modulation Frequency

The noise power spectrum and frequency characteristic of the detectors were
plotted for the purpose of determination of their maximum sensitivity. The
noise power spectrum was recorded by means of an S5-3 harmonic analyzer. The /71
ratio of signal power to noise power is plotted against frequency in Figure 23,
which illustrates a typical curve for three radiation detectors.

F.. High-Speed Radiometer for Measurement of Spatial Inhomogeneities of Clouds

The results of the studies made of the parameters of the Ge:Hg radiation
detector and comparison of the latter with other detectors in the water vapor
window of 8-13 u permitted the conclusion that it satisfies the requirements set
(high speed, sensitivity, dynamic range, dependability, etc.) better than do
detectors of Ge:Zn, Ge:Cd, Ge:Cu, Ge:Te and bolometers of various types. For
example, at the same cooling temperature (51°K) Ge:Zn detectors are inferior in
sensitivity to detectors based on Ge:Hg. Detectors of Ge:Cd require deeper
cooling, and this complicates their use in radiometric equipment. It should be
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Figure 23. Relative Threshold Sensitivity of Detectors
€./e, Versus Modulation Frequency fm.

Figure 24. Block Diagram of Radiometer: 1-5, Optical
System; 6, Modulator; 7, Filter; 8, Detector; 9, Record-
ing System; 10, Temperature Regulation Device; 11, Tem-
perature Sensing Element.
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noted that the cooling requirements for a Ge:Hg detector also lead to inconvenience
in operation, it being manifested chiefly in pouring of the nitrogen, exhausting
the nitrogen vapors, and checking the sensitivity of the detector. However, the
great number of its advantages over bolometers and other radiation detectors, as
noted in the foregoing, indicate that it is advisable to use this detector in
the radiometer. A block diagram of the radiometer is presented in Figure 24.
The object being investigated and the comparison reference source, modulator 6,
are placed on the axis of the optical system (mirrors 1-5), which focusses the
radiation passing through filter 7 to detector 8 connected electrically to re-
cording system 9. Reference source 6 is connected to device 10 for regulation
of its temperature and is provided with temperature sensing element 11,

The independent control of the scanning mirror and the modulator reference
source, and the displacement of the instantaneous viewing field of the instrument /72
in space in mutually perpendicular planes at different radiometer speeds, permit
absolute and contrast measurements of the radiation of objects. The passband of
the radioelectronic channel may vary over the frequency range Af=1-3 - 10% Hz as
a function of the operating conditions of the radiometer, the rate of displace-
ment of its instantaneous field of view in space, and the type of scanning [53].

The use of a modulator reference source of adjustable temperature makes it
possible to set the brightness of the objects being investigated to equal that
of the reference source. The method of equalizing the brightnesses of the
reference source and the object under study by means of filters is described in
[54]. This is accomplished by inserting between the infrared radiation detector
and the reference source one of a group of neutral light filters until the signal
degenerates into noise, this indicating equality of radiation of the reference
source and the object under study. In this instance the temperature of the object
is calculated on the basis of the known temperature values and the radiating
power of the reference source, and on the basis of the transmission coefficient
of the light filter inserted. This method is undoubtedly of merit, but applying
it in low-temperature pyrometry occasions a number of difficulties, such as the
need for using a large set of neutral light filters. Along with the indefinite /73
nature of their transmission coefficients, the accuracy of measurement of the
temperature of slightly heated or cooled objects will also be affected by other
factors: the natural radiation of the light filter inserted, the modulator,
and other elements of the optical channels. The speed of operation of a device
such as this is, of course, determined by the time required for equalization of
the radiation of the reference source and the object under study, which cannot
be great and depends on the skill of the person conducting the experiment. In
the instrument described allowance must be made for the natural radiation of the
lens, but the adequate speed of operation, sensitivity, spatial resolution, and
independent scanning and reference source control represent unquestionable advan-
tages permitting increase in the potential application of the instrument.

Comparison of the radiation of the object being studied with the modulator
reference source is accomplished in a simpler manner than in [54]. For this
purpose the modulator reference source is made in the form of a bladed disk
blackened with carbon black. Because of the excess pressure inside the cavity
it was possible to avoid freezing of the water vapor on the disk and in the
cavity itself. A stream of the working gas, nitrogen, of variable speed and
temperature was used to vary the temperature of the reference source. The
48
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Figure 25. Relative Spectral Sensitivity of Radiometer
with Different Interference Spectrometers.
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Figure 26. Distribution of Sensitivify over Instantaneous
Field of View of Radiometer: 1, Horizontally; 2, Vertical-
ly. X, angle from optical axis of radiometer.
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emerging stream of gas is not modulated and for this reason introduces no errors
into the results of measurement. Equalization of the brightness or temperature
of the object under study to that of the reference source is effected as it is in
[54], to the point of degeneration of the signal into noise, the temperature
reading of the reference source being taken from the temperature sensing element.
The brightness equalization accuracy is determined by the sensitivity threshold
of the radiation detector, while the accuracy of the absolute measurements de-
pends chiefly on the accuracy of graduation of the heat sensing element (0.1°).
and the graduation of the instrument (0.3°). Contrast measurement can be accom-
plished with the modulator either switched on or off, circular scanning with

an angle of turn of 10° of the field of view in space being employed.

As was stated earlier, the position of the field of view may also be dis-
placed through the azimuth and zenith angle at varying speeds by means of redu- /74
cing gears. For the purpose of visual observation of objects being measured T
the radiometer is provided with an optical system combined with the instantaneous
field of view of the instrument. The instrument has the following parameters:

(1) threshold sensitivity to energy brightness in the spectral range of
8-14 y, em(i) = 1076w « cm™2 - ster™!;

(2) the spectral range (Figure 25) is selected by interference light filters
and can be widened considerably into the shortwave region of the spectrum;

(3) instantaneous field of view of the instrument, 1.4 « 1073 x 1.4 - 1073
rad;

(4) the error of absolute measurement in the 180-320°K temperature range
is 0.5%; this has been assured as a result of study of the radiation detector

parameters;

(5) scanning: (a) circular: scanning frequency 7 Hz; (b) linear: angular /75
azimuth displacement from 4'/sec to 30°/sec; angular zenith angle displacement
from 4'/séc to 9°/sec.

(6) modulation frequency 15 kHz.

These parameters were obtained by use of Ge:Hg radiation detectors with an
angle of view of 26-28° made to conform to the radiometer lens, so that it was
possible virtually to eliminate internal instrument radiation exposure. The
design of the detector and of the modulator radiation reference source makes it
possible to vary the phase of the radiation relative to the pulse polarity.

The radiometer was graduated by the well known methods [55-57]. Hot and cooled
black body models were used as radiators. To allow for the natural radiation

of the lens the radiometer was installed in a BKK-8000 heat and pressure chamber
the temperature of which varied from -10 to +30°C. The radiometer was graduated
on the basis of sources situated at distances of 0.5 and 80 m from the instrument.
The graduation curves based on the temperature are presented in Figure 27, which
shows series of curves for the spectral regions of 10-11.5 and 8-12 u charac-
terizing variation in the signal as a function of the black body temperature, with
the comparison source at constant temperature. The signal degenerates into noise
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when the temperatures of the comparison source and the black body are equal. It
should be noted that the behavior of the curves for radiation source temperatures
below 220°K has been determined by theeretical calculations. The amplitude of the /76
modulated energy brightness was determined from the formula T

In= f {[1 (A, T) Warn (3) +1 (A, Tarn) IWo(A) +
+1(A, Tarw) Warm(A)— (4, T2) W aru (1) }s (An)dai, (2.14)

in which I(Ax, Tl) and I(A,‘Tz) are the spectral energy brightness of the source
1 and T2; I(x, Tat

tral energy density of the air column and the lens at temperature Ta

and modulator at temperatures T m) and IO(X, Tatm) are the spec- /77

5 S(A) 1is
tm n
the relative spectral sensitivity of the instrument as determined by the spectral

characteristic of the radiation detector and the interference filter *n = 1, 2, 3

is the filter number); Watm () is the transmission of the air column between

the black body and the radiation detector; Wétm(k) is the transmission of the air
column between the lens (mirrors 1-3) and the infrared detector; W;tm(k) is the

transmission of the air column between the modulator and the infrared detector;
and WO(A) is the transmission of the lens.

Generally speaking IOCA, Tatm) depends both on the relative aperture of

the optical system and on the transmission of each of the lens mirrors. It may
be disregarded in measurements of radiation sources of 180°K and above, since
the integral lens radiation value over the range Ah=8-13 y is equivalent to the
black body temperature, approximately 170°K (at a mirror temperature of 298°K),
owing to the small radiation coefficients of the mirror layers. Over the spec-
tral range of 8-13 yu the air column trasmission is near unity under graduation
conditions, while its radiation virtually equals zero, so that formula (2.14)
is simplified to

Im—= f[l(}., To) Wo()— 1 (A, T2) 1S (An) dA.

(2.15)
The sensitivity to monochromatic radiation was determined from the formula
I(an) = SO)AUe
JS(n)A1(4, Ty, Ts)da (2.16)

in which AI(A, T T2) is the recorded contrast brightness, and AUs is the signal

1’
at the radiometer output caused by modulated radiation Im.

The brightness and temperature threshold sensitivity was determined from the
formulas o
Um . _ Um

em(N =gy, Im  en(D =37,

in which Un is the noise voltage of the recording system.

AT, (2.17)
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Figure 27. Graduation Characteristics of Radiometer:
1,AN = 8-13 u; 2,AX = 10-11.5 q.

By means of the circular scanning of the instrument mirror one can measure /78
the value of the spatial inhomogeneities of the object under study by expanding
the periodic signal from the optical system into a Fourier series [58] by means
of a computer or spectral analyzer (in our case the S5-3 harmonic analyzer, the
Minsk computer, and the BESM-4).

Linear or circular scanning, or simultaneous linear and circular scanning,
makes it possible to derive a stationary and ergodic process from cloud forma-
tions; this is of importance in obtaining the statistical brightness characteris-
tics of various forms of clouds and in investigating the isotropicity of ¢loud
radiation fields. Fluctuations in the radiation of various clouds over the
spectral range of 8014 u were measured by means of the instrument described [59].

Section 5. Ground and Airctaft Systems and Measurement Methods

A. Ground Measurements

The ground measurements were generally conducted at a stationary point at
the Tyravere Observatory. Certain episodic measurements based on an incomplete
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program were conducted at Dnevropetrovsk and later by means of a mobile labora-
tory at various points in Estonia,.

The full array of ground research currently includes the following measure-
ments:

1. Recording of the fluxes of total (or scattered) and direct radiation
by means of an M-80 pyranometer and AT-50 actinometer mounted on a heliostat.

2. Recording of brightness in the shortwave region of the spectrum in the
direction of the zenith by means of the equipment described in Section 2.

3. Recording of brightness in the longwave region of the spectrum in the
direction of the zenith by means of the equipment described in Section 2.

4. Measurement of distribution of brightness over the sky by scanning within
the limits of 180° through the zenith with a narrow-angle scanning instrument
(See Chapter II, Section 2).

5. Determination of the angular velocity of displacement of clouds in the
zone around the zenith.

6. Photographing (or filming) of the cloud cover. /79
7. Visual observations of cloud conditions.

Electron potentiometers of the EPP-09 or EPPV-60 type were used as recording
instruments for all the recorders. The tape advance rate is 1200mm/hr, with the
exception of the scanning detector recording instrument, which has a rate of 9600
mm/hr. A system was employed of synchronous recording of time signals on the
recording instrument tapes either manually or automatically by a contact clock.
The possibility was additionally provided of parallel recording of the results
on punched tape (See the following section). The entire system was operated by
one or two observer operators.

The ground observations were conducted irregularly; cases of 'pure'" cloudi-
ness were selected insofar as possible, and generally during the hours around
noon. The duration of observation, which was determined by the steadiness of the
cloud cover, ranged from 1 to 4 hours.

Measurements using the equipment described in Section 3 of this chapter were
conducted from ground observation points in accordance with a special program
and independently of the other studies.

B. Aircraft Measurements

The aircraft measurements in 1967-1969 were conducted in airplanes of the
I11-14 type of the Ukrainian Hydrometeorological Scientific Research Institute
over the territory of the Ukraine, in conjunction with other research on the
physics of clouds and radiative heat exchange. Starting in 1970 an An-2 airplane
was used and flights were made over the territory of the Baltic republics and
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Leningrad Oblast along various routes as determined by the synoptic situation.
The following measurements were performed:

1. Recording of the fluxes of total and reflected radiation by means of
M-80 pyranometers situated at the top and the bottom of the aircraft fuselage.

2. Recording of brightness in the shortwave region of the spectrum in the /80
direction of the zenith and the nadir by means of the equipment described in
Section 2 of this Chapter (See Figure 11}.

3. Recording of the shortwave albedo.
4. Visual observations of the cloud cover.
5. Recording of the speed, flight altitude, and heading of the aircraft, and

of the temperature on the basis of the aircraft instruments, as well as the ground
meteorological data at the request of the State Air Weather Service along the

route at the time of overflight.

3

Figure 28. Block Diagram of Aircraft System for
Measurement of Shortwave Albedo: 1, Slide Wire
of Electron Potentiometer; 2 and 3, Pyranometers
Directed Upward and Downward; 4, Shunt for Lower
Pyranometer; RD, Reversible Motor.

Electron potentiometers of the KBT type (manufactured in the GDR) with a
tape advance rate of 1200 mm/hr were used as the recording instruments for the
fluxes of total and reflected radiation. A third potentiometer and two addi-
tional pyranometers directed upward and downward were employed for direct re-
cording of the shortwave albedo (Figure 28). For this purpose the measuring
bridge was disconnected from slide wire 1 of the potentiometer and the supply to
the slide wire was taken from upper pyranometer 2. The signal from the lower
pyranometer, shunted by resistance 4 for sensitivity matching of the pyranometers, /81
was delivered to the potentiometer input. As a result, the potentiometer reading
was proportional to the ratio Rk/Q, or in other words, to the instantaneous value
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of shortwave albedo Ak‘ Graduation of the system is very simple: in the absence

of a signal from the lower pyranometer a reading is obtained which corresponds
to Ak = 0, and the reading Ak = 1 when the exposure of the two pyranometers is the

same, so that all intermediate values of Ak will fall between these extreme points
over an evenly-divided scale.

All three electron potentiometers are supplied by the aircraft power supply
network by means of a converter of direct current (27 v) to alternating current
(220 v) of a frequency of 50 Hz and power of 200 w. The converter was transis-
torized on the basis of a circuit kindly made available to us by Yu. Reemann.

In addition, provision was made for recording synchronous time marks on the elec-
tron potentiometer tapes.

The aircraft measurement system was operated by two observers. The aircraft
measurements were conducted in horizontal flight, generally under clouds, but
sometimes also above the cloud stratum or between strata, over specific routes
within the limits of a particular cloud system. The observation stretch ranged
from 50 to 500 km, depending on the concrete situation.

Section 6. Automation of Primary Data Processing

As was stated earlier, all the measurement results were recorded on the tapes
of electron potentiometers or loop oscillographs, and final processing of the data
was effected in a digital computer. Preparation of the initial material for the
computer involves considerable expenditure of time and labor, since it is neces-
sary to take the ordinates from the recording instrument tapes with a small
discretization interval and record the results on punched tape. Hence a simple
angle-to-code converter was developed for the EPP-09 and KBT electron poten-
tiometers, one which provided the measurement results in digital code simul-
taneously with the recording on the tape. The converter is a cylinder with the /82
code mask of the eight-digit Gray code applied to it. All the code tracks are
electrically isolated from each other and have individual leads. In addition to
the code tracks, there are two contact tracks on the cylinder for the electric
power supply of the system. The cylinder is fixed in position on the slide wire
of the electron potentiometer. A contact group consisting of a series of contacts
sliding over the surface of the code cylinder, which are arranged in one row
parallel to the axis of the cylinder and connected electrically to each other, is
connected mechanically to the sliding contact of the slide wire (slide wire shaft).
Depending on the arrangement of the sliding contacts (turning angle of the slide
wire axis), the voltage from the power supply tracks is fed through the sliding
contacts to the leads of the digits whose uninsulated sections are under the con-
tacts. A diagram of the converter is presented in Figure 29. For the sake of
simplicity a four-digit code mask is illustrated. The converters for the EPP-09
and KBT are identical in principle, differing only in structural design. The
eight-digit binary code (Gray code) was selected on the basis of the accuracy
classification of electron potentiometers, in order to ensure that the conversion
error would be no greater than the potentiometer error.

The parallel eight-digit code obtained at the output of the converter may be
fed directly to the input of an eight-channel tape puncher, but since the majority
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of digital computers (in our case chiefly a computer of the '"Minsk'" type) have a /83
five-channel input, it is necessary to reshape the code output by the converter.
For this purpose a special matching and control desk was developed, by means of

which the eight-digit code from the converter output is converted to two consecu-
tive four-digit characters which are output to the puncher. First the more recent
four digits are punched, and then the older ones. After each character (two
four-digit signals) the desk shapes a dividing signal, which is also punched in

the tape to avoid errors associated with possible intermissions in the system. In
addition, the matching and control desk has a control signal generator permitting
interrogation of the converter and punching at time intervals of 1, 2, 3, 6, or

10 sec, as well as on the basis of external timing signals. With each punching

cycle a pulse is emitted which may be used to synchronize the operation of other
instruments, such as time-lapse motion picture equipment. There is a keyboard for
manual insertion of additional characters and data into the tape. In a number

of cases it is necessary to know the amount of numbers in the array, for which
purpose an electromechanical pulse counter is incorporated in the system. A /84
block diagram of the punching system is presented in Figure 30. T
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Figure 29. Diagram of Angle-to-Code Converter Code Mask:

1, Current-Conducting Sections; 2, Sliding Contacts; 3,

Insulating Sections; KO, Converter Power Supply Tracks;
K1-K4, Leads of Individual Digits.
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Figure 30. Block Diagram of System for Recording of Data
on Punched Tape: 1, Sliding Contacts of Angle-to-Code
Converter; 3, Converter Code Mask; 3, Control Signal
Generator; 4, Code Converter; 5, Keyboard; 6, Counter;

7, Tape Puncher.
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Owing to a shortage of punchers and transitional units, in our experiments

not all of the results were recorded on punched tape directly in the measurement
process. Hence a part of the tapes containing the results of ground measurements
and all the aircraft data had to be processed after the measurements had been
performed. In accordance with the example presented in [60] a system of semi-
automatic tape reading was devised. The basic portion of the system is represented
by a stabilized adjustable voltage source with the shaft of the master potentio-
meter of the latter connected to an angle-to-code converter analogous to that
described in the foregoing. The output voltage, which can be adjusted manually

by means of a knob, is fed to the input of the electron potentiometer on which

the tape to be processed is displaced and the pen of which is replaced by a pointer.
Constant following of the curve recorded on the tape is accomplished by rotating
the knob of the master potentiometer (electron potentiometer slide wire). The
output signal from the converter is recorded in the punched tape in a manner
andlogous to that described in the foregoing. Experience acquired in use of the
system indicates that in the processing of tapes the rate of tape advance may

be three times faster than in the measurement process, but if the operator is
sufficiently experienced the errors are negligible,

57



CHAPTER III. THE STOCHASTIC STRUCTURE OF CLOUD FIELDS /85
Section 1. Average Characteristics of Cumulus Clouds

In meteorological practice the cloud cover is usually characterized by the
quantity and shape of clouds. For the majority of cases, however, these
characteristics provide too little information for study of the structure of cloud
fields and their interrelations with the structure of radiation fields. In the
present work the cloud cover is additionally characterized by the coverage of
individual zones and narrow directions of sighting, as well as by the quantity
and shape of clouds (See Chapter I).

The quantity of clouds in the atmosphere is most often determined at the pre-
sent time on the basis of ground or satellite observations. In the case of ground
observations the quantity of clouds is expressed as the percentage of cloud cover-
age of an imaginary hemisphere having the observation point as its center, this
quantity being termed ''relative cloudiness." By projection of the clouds onto an
imaginary sphere having its center at the center of the Earth or, in the plane-
-parallel model of the atmosphere, onto a horizontal surface, the mean quantity
of clouds, called "absolute cloudiness," 1is obtained. Note that absolute cloudi-
ness coincides with the mean cloud coverage of the zenith averaged over space. A
value near that of absolute cloudiness may be obtained on the basis of satellite
photographs taken at small angles to the zenith. In view of the considerable ver-
tical dimensions (thickness) of cumulus clouds, the probability of coverage of the
direction of sighting increases with increase in the zenith angle of observation.
The absolute cloudiness value is consequently always smaller than the relative /86

value.

We now proceed to discussion of the laws governing increase in coverage of
the direction of sighting toward the horizon. We employ the ejection theory

for purposes of theoretical analysis.

Consider a vertical cross-section of a normal random surface £(x) bounded
at altitude Z (Figure 6a). Taking [61, 62] into account, we find that the average
multiplicity of intersection of the direction of sighting with function £(x) at the
entrances will be
_.cot’e
1 cotd | 0y __o v

1 |
= erf — puy
N (®) 9 ' 9 Y2 0. TV2ncot0

(3.1)

. . 2 . . . . .
in which oy 1is the dispersion of the slopes of the normal random surface in direc-

tion x, and erf is the probability interval.

The mean multiplicity of intersections at the exits is expressed by

M(9) =N (9)—1, (3.2)
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and the mean multiplicity of exits from surface £(x) to level Z will be

Mz(t?)=n(0)M(0)=n(0)[N(0)—-l]. 5.3)

in which n(0) = NZ(O) is the mean multiplicity of entrances into the surface to

level Z at & = 0, that is, the mean cloud coverage of the zenith.

Assuming the exits from the surface to be statistically independent, on the
basis of the Poisson distribution we obtain the probability that the direction of
sighting entering a cloud will exit through its base:

Po=e-nOINO-1) (3.4)
and the direction of sighting will exit from the sides of clouds from 1 to an infi-
nite number of times with probability 1 - PO.

The probability of finding a cloud in the direction of sighting consists of
the sum of the probability of exits of the direction of sighting from the base
and sides of clouds, that is,

n($)=n (0) e—nMOIN©O)1] __ e—-nO@OINO)-1) L |, (3.5)
As is to be seen from formula (3.5), up to zenith sighting distances /87
% < /2 -9 , in which © is the maximum slope of the sides of the clouds,

n,max n,max
the probability of coverage of the direction of sighting is constant, and at large
sighting angles probability n (9) increases monotonically, approaching unity
when 8 > w/2.

When the Poisson distribution is used for the mean number of intersections
there is no need for determining the combined probabilities of finding a random
surface along different sections of the line of sight [30, 63]; this greatly sim-
plifies solution of the problem assigned. We must note that there are as yet no
empirical data for determination of the conbined probabilities. In the region
of variation of zenith angles, in which Mz(ﬂ) is small, the exits from the sur-

face are correlated and formula (3.5) yields slightly understated values for n(9).

If the field is isotropic, the relative cloudiness is determined from the
formula
Tn(9)sin o ds
n= [ n(#)sin¢dd.
A (5.6)
The relationship of the coverage of the direction of sighting with clouds,
n(6), to the zenith angle of observation can be determined by employing the
cloud frequency k (average number of clouds or gaps per unit length), the proba-
bility density of distribution of gaps between clouds, p(s), and the probability
density of the vertical thickness of individual clouds p(h) [64]:

n(®)=1—x [p(h)dh [ (s—htg®)p(s)ds. (3.7)
0 htgo
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In derivation of formula (3.7) the clouds were approximated by straight cylinders
having bases of arbitrary configuration, while the distribution function of the
probabilities of the horizontal and vertical dimensions of the cloud cover were
assumed to be statistically independent. Cloud frequency « and probability den-

sity p(s) were determined empirically on the basis of ground and aircraft measure-
ments (See Section 3 of this chapter). Empirical determination of p(h) entails

great difficulties; hence it was necessary to restirct ourselves to the mean ef- /88
fective thickness, making use of formula (3.7). Only slight errors result if T
this thickness is skillfully selected [64].

In [35-37] cumulus clouds are approximated as cylinders forming a Poisson
flux. Poisson flux approximation yields exaggerated values for n (¢) when n(0)
> 0.6. The reason for this is that cumulus clouds are not distributed indepen-
dently of each other in space; rather extensive correlation of the clouds pre-
sent is observed (See the following sections). With maximum decrease in the
quantity of clouds at the zenith, that is, when n(0) - 0, the cloud elements
obtained in theory by limitation of the random Gaussian surface at the bottom also
form a Poisson flux. The clouds present may be assumed [29] to be uncorrelated
if n(0) < 0.03. This last-named circumstance also explains the close agreement
of all models at small values of n(0).

The increase in cloudiness toward the horizon was determined empirically on
the basis of photographs). The sky coverages at intervals of 10°, with zenith
distances ranging from 5 to 85°, have been determined by processing the phto-
graphs.

Figure 31 illustrates typical coverages of the direction of sighting as a
function of the zenith angle as determined on the basis of individual photographs
at a relative cloudiness of 0.5. Averaging over the azimuth up to zenith dis-
tances of 75-80° is obviously inadequate for obtaining stable mean values. In
individual instances a monotonic behavior of n(®) is established even at ¢ = 70°.
The dispersions of coverages of the direction of sighting averaged over the azimuth
as a function of zenith angle ¢ are presented in Section 6 of this chapter.

Sky coverages averaged over photographs at a relative cloudiness of 0.1 to
0.9, as a function of the zenith direction of sighting, are shown in Figure 32.
A monotonic trace of the curve up to small zenith distances is established with
a number of photographs no smaller than 25.

The mean values of parameters ¢, ' and n(0) are obtained by use of the results /90
shown in Figure 32 for calculations based on formula (3.7). It is found that 9

increases somewhat with increase in the amount of relative cloudiness. Unfor-
tunately, the small number of experiments and their low accuracy prevented positive
establishment of the lastnamed relationship:. On the average the root mean square
deviation of the derivative for a normal random surface equals o, = 1.2,

The mean coverages of the direction of sighting calculated with formula
(3.7) are plotted in Figure 33 against the zenith angle of the direction of
sighting. Comparison of Figure 32 and Figure 33 indicates satisfactory agree-
ment between the empirical and theoretical results (formula (3.7)). In the case
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of cumulus clouds the coverage of the direction of sighting begins to increase
substantially starting at the zenith distance of around 50°. The latter, for
example, reduces the duration of sunshine with decrease in the altitude of the

Sun with the cloudiness copdjtion remaining unchanged. /91
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Figure 31. Coverage of Direction of Sighting n (8) /89

Versus Zenith Angle ¥, Obtained on the Basis of

Individual Photographs at a Relative Cloudiness of
0.5.
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Figure 32. Coverages of Direction ot Sighting n (%)
Averaged over Photographs Versus Zenith Angle @ at
a Relative Cloudiness of 0.1 to 0.9.
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Figure 33. Mean Coverages of the Direction of Sighting
n(¥) Calculated on the Basis of Formula (3.7) Versus
Zenith Angle ¢ with a Relative Cloudiness Ranging from
0.1 to 0.7.

The amount of relative cloudiness always exceeds the mean coverage at the
zenith. The differences are at the maximum when n(0) = 0.5, being 0.13 on the
average. The relationship between the relative and the absolute cloudiness
may be described by the following empirical formula:

n=n(0)4+0.5{1 — n(0) ]n(0). (3.8)

Relation (3.8) is illustrated in Figure 34. With zenith coverages ranging
from 0.1 to 0.2 formula (3.8) yields values for the relative cloudiness which
are somewhat understated in comparison to the empirical data. With low cloudi-
ness values the relationship between the relative and the absolute cloudiness
is described more accurately by approximation formula (5.8), which is given in
Chapter V, Section 1. However, the latter yields exaggerated values for relative
cloudiness when 0.3 < n(0) < 0.8 and is less convenient to use in theoretical
calculations and numerical operations.

Section 2. The Statistic Structure of Cumulus Cloud Fields /92

To study the structure and distribution of cumulus clouds within cloud
masses recording on the ground of coverage of the sky with clouds in the direc-
tion of the zenith and the Sun was conducted along with photographing of the sky,
and aircraft measurements were also made of the presence of clouds in the direc-
tion of the zenith (nadir) along the route of flight. Study of cloudiness from
aircraft was conducted above the Ukraine in 1967-1969 in collaboration with the
Ukrainian Hydrometeorological Research Institute, and starting in 1970 above the
Baltic Republics and Leningrad Oblast. Correlation and spectral analysis of the
time and space cross-sections of the cloud fields was performed. The cloud cover
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was simulated by a sequence of rectangular pulses (see Chapter I, Section 6).
Analysis was made of the results of 102 observations of the presence of cumulus
clouds. Of this number, 55 observations were completely processed. It is to be
noted that information on the statistical structure of the cloud cover may also
be obtained by processing photographs of the sky. However, automated processing
of photographs entails considerable difficulty, since there are no satisfactory
methods of distinguishing clouds from the clear sky against a variable back-
ground.

n(Q) The results of the experimental
studies have been grouped on the
10 basis of the mean cloud coverages
of the direction of the zenith or
Sun. The studies of cloud coverage
of the Sun were in the vast majority
of cases conducted at zenith dis-
tances 9 < 50°. As may be seen
from the results presented in the
preceding section, virtually no
increase in cloudiness toward the
horizon is observed at zenith dis-
tances of ¢ < 50°. This circum-
) o L stance also explains the fact
0 as W0 a established empirically by us that
the statistical structure of cloud
Figure 34. Relative Cloudiness Versus coverage of narrow directions of
Absolute Cloudiness Value Calculated sighting is in effect independent
with Formula (3.8). of the angle of observation at
zenith angle # < 50°. On the basis
of the foregoing, we do not examine coverages in the direction of the Sun and
zenith separately in performing our analysis.

If the cloud cover is simulated by a sequence of rectangular pulses, the
dispersion of the presence of clouds is expressed by the simple relation

ome=n(0)— n2(0). (3.9)

As may be seen from formula (3.9) the dispersion is at the maximum with n(0) = /94

= 0.5 and decreases with decrease or increase in the mean coverage at the zenith.

Typical autocorrelation functions of the presence of clouds at 0.45 < n(0) <
< 0.55 for ground measurements and at 0.35 < n(0) < 0.45 for aircraft measure-
ments are presented in.Figure 35, a and b. As this drawing shows, the empirically
determined correlation functions are characterized by considerable dispersion,
which increases with increase in displacement in time or space. The chief
reasons for this are the limited number of observations, the variability of the
meteorological situation from observation to observation (see Chapter I, Sections
1, 3), and in the case of ground measurements also the variation in the rate of
cloud displacement. Hence in theoretical analysis we employ correlation functions
averaged over the aggregate number of observations (Figure 36). A dependence of
the correlation function on the mean coverage of the zenith, n(0), was detected Lgé
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only for the ground measurements, since the aircraft measurements relate chiefly
to zenith coverage cases n(0) = 0.3-0.4. As may be seen from Figure 36, the
correlation is at the maximum with n(0) = 0.5, and the correlation scale con-
tracts with increase or decrease in n(0).

alt) ntn)

10 10 1
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Figure 35. Examples of Autocorrelation Functions of Coverage
of Zenith by Cumulus Clouds: a, Ground Measurements at n(0) =
= 0.5 (t = Time, min); b, Aircraft Measurements at n(0) =

= 0.4 (x = Space Coordinate, km).

In simulation of the cloud cover by a normal random process (see Chapter
I, Section 6) the theoretical autocorrelation function of the process of
occurrence of clouds over the cloud field cross-section is of the form [28, 29]
hod w fkg(t)
= Sl om (2]
a0 (£) n(O)—nZ(O),ﬁ 0\ TR (3.10)

in which Q(k) is the derivative of order k of the probability integral, w/c is
the relative cutoff level, and rs(t) is the correlation function of a normal

random process.

If n(0) = 0.5, that is, w/o = 0, the expression for correlation function
(3.10) is simplified and assumes the form

ros) =2 arcsinri(1). (3.11)

The empirically determined mean correlation functions of the presence of
clouds over the cloud field cross-section for n(0) from 0.1 to 0.9 are closely
approximated by the formula taken from [34]
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Ta@(?) =% arcsin e—=[no)-t! (3.12)

and parameter o as a function of n(0) may be expressed by the formula

alt)
1.0

05 -

Figure 36. Autocorrelation Functions,
Averaged over Aggregate Number of
Observations, of Coverage of Zenith
by Cumulus Clouds Based on Ground
Measurements (t = Time, min):

1, n(0) = 0.8; 2, n(0) = 0.2; 3,

n(0) = 0.5.

a[n(0)]=027+08[n(0)—05]% (3.13)

The space function of the
correlation is obtained by multi-
plying parameter a[n{0)] in
expression (3.12) by 3.0 and
replacing time t in minutes by
space coordinate x in km. Para-
meter o is plotted against n(0)
on the basis of formula (3.13) for
ground and aircraft measurements
in Figure 37, in which dots and /96
crosses designate the empircally
determined values. As may be
seen from Figure 37, in the first
approximation the empirical data
confirmed the theoretically
derived trace of o[n(0)]. The
small number of empirical ground
studies at n(0) > 0.5 and the
absence of aircraft studies under
the same conditions prevent study
of the possible asymmetry relative
to a[n(0)] = 0.5

When n(0) = 0.4 the empirically
determined values of the parameters
are considerably larger than the
theoretical ones determined on the
basis of formula (3.13). Since

when n(0) = 0.3, 0.4, and 0.5 sufficient empirical material is available for the
drawing of statistical conclusions, a divergence such as this indicates the
existence of substantial departures of the process under study from the normal
random model if n(0) = 0.4. According to the theoretical model the amount of
clouds increases from 0.3 to 0.4 chiefly as the result of increase in the dimen-
sions of the individual clouds, but under natural conditions increase in cloudi-
ness as a result of increase of the number of clouds predominates over this
range. It is this which explains the increase in parameter o at n(0) = 0.4,
that is, the '"contraction'" of the correlation function.

Figures 38-40 illustrate the spectral densities of the presence of clouds and
gaps as calculated on the basis of the autocorrelation function. The spectral
densities at n(0) = 0.5 for individual observations are given in Figure 38,
while Figure 39 presents the spectral densities grouped according to n(0) and /99
averaged over the observations. Comparison of Figures 36 and 38 reveals that
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widening of the energy spectrum corresponds to contraction of the correlation
time. This conclusion is a very general one. )

The spectral densities in the
range of linear frequencies f from

. . 0.12 to 2.4 min ! are closely
x approximated by the formula S(f) ~

~ f~k, in which exponent k ranges
Q2 from 5/3 to 4/3 (Figure 40). Ex-
ponent k is the smallest when n(0) =
= 0.5 and increases with increase

- T v ' or decrease in the mean coverage
e ’ 03 05 a9 at the zenith.

Figure 37. Parameter o, min_l, Versus Section 3. Distribution Functions of
n(0): the Curve was Obtained by Use Cloudiness Parameters - A
of Formula (3.13); the Dots Denote

Values Based on Ground Measurements The cloud cover is characterized
and the Crosses Values Based on by the probability densities of the
Aircraft Measurements. various elements of cloud formations

as well as by the results of spectral
correlation analysis.

In order to determine the parameters of distribution of the duration of
cloud coverage of the zenith we employ the density of probability relative to
the number of gaps or clouds p(s), which determine their share in the form of
time t or length s of the time or space cross-section.

With n(0) = 0.5 and a correlation function of the presence of cloudiness of
the form of [3.12), the theoretical formula for the probability density of the
number of gaps or clouds is of the form

@ (0.5) 0.0 (3.14)
x  [1—e-2a0mT%h ° ’

p(s)=
in which parameter «(0.5) is determined from formula (3.13).

Formula (3.14) was derived on the assumption that the normal random process
is at the same time also a Markovian one [65, 66]. According to the properties
of continuous Markovian processes, formula (3.14) is not applicable when s = 0.

The empirically obtained probability densities averaged over the observations
and grouped according to n(0) in the interval from 0.1 to 0.9 are closely
approximated by the formula taken from [34]

as[n(0)] e—a,InE)ls
p[S. n(O) 1= pe {l — e—'a.[ﬂ(ﬂ)li}’/z ’ (3. 15)

in which parameter a  as a function of n(0) is described by the empirical /100

expression
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a:[n(0) }=0.272-0.8[n(0) — 0.5]2.

(3.16)

which 1s analogous to formula (3.13).
Stf)
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Figure 38. Examples of Spectral Densities of Zenith /97

Coverage by Cumulus Clouds (in Relative Units): Ground
Measurements at n(0) 0.5 (f in min 1y, b, Aircraft
Measurements at n(0) 0.4 (f in km 1),

In the calculations of the probability density of the number of clouds as
a function of their duration, in formula (3.16) the '"+'" corresponds to
n(0) — 0.5 < 0, and the "' to n(0) — 0.5 > 0.

The probability density for gaps is obtained by replacing n(0) in formulas
(3.15) and (3.16) with the mean probability of a free line of sight c¢(0) = 1 —
—n(0).

The empirically determined probability densities of the numbers of clouds /101
are plotted against their duration in Figure 41. It is to be seen that short
gaps and small clouds are the ones the most often encountered over the cloud
field cross-section. Formula (3.15) and the curves in Figure 41 characterize
the cloud cover at zenith angles of the direction of sighting ¢ < 50°. At
large zenith distances an essential role is played by the lateral portions of
the clouds (see Chapter III, Section 1), which reduce the apparent dimensions
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of the gaps. It is to be observed that the probability densities determined
over the cloud field cross-section on the bases of (3.15) do not coincide with
the probability densities of distribution of the basis of the clouds based on
the dimensions (area).

lof -25 -5 0
S{f)
- -05
a5+
- =10
2
! \ -5
0 05 1.0 f o
Figure 39. Spectral Densities of tys)

Presence of Clouds and Gaps at the
Zenith Based on Ground Measurements,

Grouped According to n(0) and Figure 40. Spectral Density,

. . _ Averaged over Observations, of
Averaged Over Observations: 1, n(0) = Zenith Coverage by Cumulus Clouds

;ig:?; 2, n(0) = 0.2 or 0.8 (£ in Based on Ground Measurements on
‘ Logarithmic Scale with n(0) = 0.5.

By approximation of the basis of clouds as circles of diameter D, and
on the assumption that the cloud field is isotropic, in [36] the probability
density is derived for the distribution of clouds over the diameters on the
cloud field cross-section:

p(D)————Dde[ fsz(gz(i)(jj)sz)'/:] (3.17)

The distribution function of clouds on the basis of area can easily be derived
from the latter:

ps(D)=——PP)
Dfp(Di)dD’ (3.18)

We see by comparing formulas (3.17) and (3.18) with formula (3.15) that the
weight of the short cloud cross-sections con51derab1y exceeds that of the small

clouds. In this case p(D = 0) = pS(O) . However, as has already been

observed in [36], the calculations based on the formulas entail substantial
errors. Empirical studies of the distribution of the bases of clouds by areas
are thus needed to solve this problem.
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Figure 41. Probability Densities, Averaged over Observations,
of Dimensions of Cumulus Clouds Based on Ground (st in min)
and Aircraft (sx in km) Measurements: 1, n(0) = 0.1; 2,
n(0) = 0.9.
As may be seen from the foregoing, the probability densities of distribu-
tion of the number of gaps or clouds are virtually independent of the mean
coverage of the zenith. The cloud frequency, that is, the number of them per
unit time in ground measurements or per unit length in aircraft measurements,
is more sensitive to variation in n(0).
For a normal random model the frequency of clouds and gaps is expressed /102

by the formula L o
x[n(0) ]=———=-exp{—[argerl 1 —2n(0)|}?},
2n 0 (3.19)
in which o, and o, are the root mean square deviations of the normal random

surface and its derivative from the mean.

The relationship of the frequencies of clouds and gaps is illustrated in
Figure 42, in which the solid-line curve corresponds to calculations based on
formula (3.19) and the dots and crosses represent the results of empirical
ground and aircraft studies averaged over the observations and grouped
according to n(0). The cloud frequency is at the maximum when n(0) = 0.5 and
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undergoes nearly twofold variation with variation in zenith coverage n(0) from

0.1 to 0.9. Owing to the small number of experimental studies the cloud fre-

quency at n(0) = 0.7 is characterized by the greatest error. It is to be noted /103
that the experimental studies are also insufficient for investigation of possible
asymmetry of the curve of cloud frequency relative to the frequency at n(0) =

= 0.5.

0 05 10 nl(0)

Figure 42. Frequency (in min_l) of Cumulus Clouds

at the Zenith: Curve, Values Based on Formula (3.17);
-, Values Based on Ground Measurements, x, Values
Based on Aircraft Measurements.

By approximating the cloud frequency with formula (3.19) we find that

1%

2m o,
increase in cloudiness towards the horizon (Chapter III, Section 1) that o1 =

= 0.18 min~! or 0.45 km Y. But it is found from the observations of

= 1.2. Hence evaluation of the root mean square deviation of the normal random
surface yields o, = 0.4 km !, The latter determines the distribution function

of the probabilities of a normal random process
(h-+w)?

1 e
hn(0)]=—--—- 2:04° (3.20)
pLh,n(0)] 0.4 Y22 n(0) ¢

cumulus clouds with increase in altitude. 1In this instance h ranges from 0 to
o, while w = arg erf [1 - 2n(0)], if n(0) = 0.5, or w = -arg erf [2n(0) - 1],

if n(0) < 0.5.

On the basis of the results obtained in studies of the structure of cumulus
clouds and in keeping with [29] it may be inferred that the altitudes of the
summits of individual clouds are also distributed normally. Empirical
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determination of the distributien of the summits in altitude remains a task for
subsequent research.

We employ two-dimensional distribution functions to describe the distribution
of coverage of the direction of sighting in a cross-section of cloud fields in
time or space. The probabilities that the directions of sighting at moments
separated by interval t in time (or interval x in space) will be covered with
clouds or free of clouds are expressed respectively by the formulas

- P[n(0), n(0), t1=rn@ (t) [n(0) — n2(0) ]-4-n2(0
n (0) J--n2(0) (3.21)
and
P[c(0), c(0), t]=P[1 —n(0), | —n(0), t]=
=ra@ (4 [R(0)— n2(0) 1+-[n(0) — 1 ]2. (3.22)
For the combined probability of observation of clouds at a particular moment /104
and their absence after time interval t we obtain

P[n(0),c(0),t1=P[c(0),n(0),t]=n(0)— P[n(0),n(0),{]=
=[1—ru@(t) 1[n(0)—n*(0) ]. (3.23)

. /105
Formulas (3.21)-(3.23) have been normalized by the condition —

P[n(0),n(0),t1+P[c(0),c(0),¢1+2P[n(0),c(0),f]=1. (3.24)

Figure 43 presents the entire body of two-dimensional functions P{n(0), n(0),

t] obtained by way of experiment. The results of the empirical studies are /106
grouped according to intervals An(0) = 0.1. The broken lines in Figure 43

reflect the probabilities at the ends of intervals n(0) calculated on the basis

of formula (3.21) by use of correlation function (3.12).

The two-dimensional probabilities of the presence or absence of clouds
for coverage interval n(0) = 0.1 to 0.9, as calculated on the basis of formulas
(3.21)-(3.23) and (3.12), are illustrated in Figures 44 and 45.

As may be seen from Figures 43-45, the two-dimensional probabilities of
the presence or absence of clouds do not depend on the interval if t > 10 min
in the case of ground measurements and respectively x > 4 km in the case of
aircraft.

Eigenfunctions

The statistical structure of the cloud cover in a time or space cross-
-section of the cloud field has been considered in the previous sections.
However, owing chiefly to the increase in cloudiness towards the horizon, the
vertical cross-section structure does not coincide with the zenith angle
structure. The greatest differences are observed at & > 50°, at which the
effect of shading is noticeable. To determine the parameters of the cloud /107
structure in the sky we apply expansion of the presence of clouds on the basis
-of the optimum eigenvalues and eigenfunctions of the correlation matrix [6, 7].
The correlation matrix elements are represented by the coefficients of correlation
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of the presence or absence of clouds at different zenith distances. It is to be
noted that the expansion may be performed not merely on the basis of the eigen-
values and eigenfunctions of the correlation matrix but on that of any ortho-
gonalized basis functions as well. It is clear, however, that expansion on the

basis of arbitrary orthonormalized functions has neither physical nor statistical
significance. From the statistical viewpoint expansion on the basis of the
eigenfunctions of the correlation matrix corresponds to expansion to the basis /108
of the most frequently encountered combinations. The most frequently encountered
eigenfunctions are those to which the largest eigenvalues correspond.
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/104
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Figure 43. Examples of Two-Dimensional Distribution
Functions of Clouds or Gaps Calculated on the Basis
of Formulas (3.21) and (3.22).

Making use of the results of the empirical results obtained by photographing
the sky we have calculated, as a function of zenith angle ¥, the eigenfunctions
and eigenvalues for cloud coverage of the sky averaged over the azimuth and for
the amount of relative zonal cloudiness. The normalized coefficients of /109
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correlation at & = 5, 35, or 65° with the coverages in directions ¢ = 5-85° for
coverages of the direction of sighting averaged over the azimuth or for relative
zonal cloudiness Ksﬂ’ KSS# and K656 are presented in Figures 46-48. We see that

the correlation coefficients are similar for different observations, and that
the correlation radius decreases with increase in zenith angle ¢. The latter
circumstance is due to the averaging over the azimuth and to the fact that the
distance in space increases with increase in the zenith angle at the same
zenith angle distance. It is to be noted that the small number of experimental
studies does not permit study of the relationship of the correlation

matrices, as well as of the eigenvalues and eigenfunctions, to mean zenith
coverage n(0).
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Figure 44. Two-Dimensional Distribution
Functions of Clouds or Gaps Calculated on
the Basis of Formulas (3.21) and (3.22).
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Figure 45. Two-Dimensional Distribution Functions of
Clouds of Gaps Calculated on the Basis of Formula (3.23).
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Figure 46. Normalized Coefficients of
Correlation of Sky Coverage with Cumulus
Clouds Averaged over the Azimuth at ¢ =
= 5° with Coverages at ¢ = 5-85°.
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Figure 47. Normalized Coefficients of Correlation
of Sky Coverage with Cumulus Clouds Averaged over
the Azimuth at ¢ = 35° with Coverages at ¥ = 5-85°,

Like the correlation coefficient (Figures 46-48), the eigenvalues of
correlation matrix A as well do not vary appreciably from observation to
observation. The eigenvalues and the relative accuracy of expansion when use
is made of the first ith components for the coverage of the direction of
sighting averaged over the azimuth are presented in Table 3. It is to be seen
that the first eigenfunctions cover 65-79° of the dispersion, and the first
3 eigenfunctions 92-93%.

The first eigenfunctions Xl(ﬂ) are shown in Figure 49. It is to be seen

that they are close to each other from case to case. Attention is attracted by

the circumstance that the first eigenfunctions have maximum values at the

zenith and decrease monotonically with increase in the zenith angle of observa-

tion, coming to equal zero in the vicinity of the horizon. From the physical /111
standpoint such a course of Xl(ﬂ) signifies that the region around the zenith

is the most frequently either completely covered with clouds or clouds are
absent from it, but the horizon is constantly covered with clouds. The
variability of the amount of clouds decreases in this case with increase in the
zenith angles. The second eigenfunction (50) presents in some sense a distorted
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picture of the course of the first eigenfunction, in that the increase or decrease
in the amount of clouds at the zenith is accompdnied by corresponding decrease

or increase in the amount of clouds at the mean zenith distances (40-60°). The
third eigenfunction describes a finer structure of cloud cover variability

based on zenith angles (Figure 51). Increase in cloudiness at the

zenith is accompanied by simultaneous increase in it near the horizon (70°) and
decrease in the area & = 35°, and vice versa.

Kess
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Figure 48. Normalized Coefficients of Correlation
of Coverage of the Sky with Cumulus Clouds Averaged
over the Azimuth at ¢ = 65° with Coverages at ¢ =

= 5-85°.

The similarity of the eigenfunctions from case to case decreases, as may be
seen from Figures 49-51, as their index number becomes larger. This last-named /113
circumstance is quite natural, since they allow for a finer variability struc-
ture which does not recur from case to case.

The eigenfunctions vary widely starting with the fourth and for this
reason do not lend themselves well to physical interpretation. Inasmuch as they
are of but small weight in the total dispersion, we will not concern ourselves
with them.
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The eigenvalues and eigen-
functions of the amount of
relative zonal cloudiness were
calculated for the same observa-
tions. The eigenvalues and the

- relative accuracy of expansion
Plnlo),1-n (0] nl0}=05 are presented in Table 5, the
first kth components being used
for the amount of relative zonal
cloudiness. It is to be seen
that the weight of the first
Y] eigenfunction is understated and
a9 that of the second exaggerated
4 S in comparison to the eigenvalues
0 ' s o ¢ of the coverage of the direction
of sighting averaged over the
azimuth (Table 3). The first
three eigenfunctions assure
almost the same expansion
Figure 49. First Eigenfunctions of Sky accuracy in this case. They are
Coverage by Cumulus Clouds Averaged over presented respectively in
Azimuth Versus Zenith Angle 9. Figures 52-54.

021 n(0)=03
a7

X The first eigenfunction has
1 its maximum at a zenith angle
% = 45°, decreasing to zero at
the zenith and on the horizon.
as 4 The maximum is due to the greatest
weight in relative cloudiness
of the 45° zone, that is, the /115
variability of the relative
cloudiness is determined chiefly
by the variability of the amount
of clouds in the middle zone
(¢ = 30-60°). The second and
third eigenfunctions, like the
40 80 X coverage of the direction of
. sighting, describe a finer
structure of cloud cover
variability by zones. Comparison
of Figures 49-51 with 52-54
reveals that the eigenfunctions
differ more greatly among the
-Qs 4 individual cases in the latter
figures.

Figure 50. Second Eigenfunctions of
Coverage of Sky by Cumulus Clouds
Averaged over Azimuth Versus Zenith
Angle 3.
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40 80 4
0 Figure 52. First Eigenfunctions of
Amount of Relative Zonal Cloudiness
Versus Zenith Distance of Zone.
Section 5. Relationships Among
Statistical Characteristics of
Various Cloudiness Parameters
=05 - Chiefly the results of investi-
gation of the fine structure of
cumulus cloud fields have been pre-
sented in the foregoing. Study has
Figure 51. Third Eigenfunctions of been made of the structure.of the
cloud coverage of narrow directions
Coverage of Sky by Cumulus Clouds £ sighti d the 1 £ di .
Averaged over Azimuth Versus Zenith of sighting and the laws of distri-
Angle O bution of the cloud cover over the
g ' sky as a function of the zenith

angle of observation. At the same /116
time, on the one hand it is sufficient in meteorology for the solution of a large
number of problems to characterize the cloud cover by various parameters
averaged over space, such as the distribution of clouds over individual zones,
the amount of the clouds over the entire sky, the amount of clouds over a
certain territory, and so forth. On the other hand, the entire array of
parameters required for complete discription of cloud fields is not always deter-
~mined by way of experiment. For example, at weather stations study is usually
confined to determination of the amount and shapes of clouds in the sky. In
our aircraft studies instrument measurement was made only of the presence or
absence of clouds at the zenith (nadir) along the flight route, while the amount
of clouds in the sky was determined very roughly from the aircraft by visual
estimate, the results in this case depending largely on the distance between the
aircraft and the cloud layer and so forth. Hence for the purpose of comprehensive
description of cloud structure it is highly essential to ascertain the relation-
ships among the statistical characteristics of the various cloudiness parameters.
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TABLE 3. EIGENVALUES OF COVERAGE OF DIRECTION OF
SIGHTING AVERAGED OVER AZIMUTH

-
by

n(0) = 0.2 n(0) = 03 n(0) = 03 n(0) = (12]
n=05 n= 04 n=05 n= 07
N=34 N=15 N=21 N=28
‘ s(X() ‘-{g S(Xi) ’ 11. S(X() ’ Z(t ) S(X.) ’ 1.9 Ll-l—o—
1 0.3528 65.0 0.4652 789 02819 775 04946 76.3
2 0.0956 82.7 00553 883 0.0341 86.7 00728 875
3 0.0595 935 0.0254 926 0.0180 916 00362 93.1
4 0.0124 956 0.0219 963 00117 948 0.0200 96.2
5 0.0075 972 0.0082 97.7 0.0081 97.0 0.0080 97.6
6 0.0057 982 0.0078 99.0 0.0067 988 0.0078 98.8
7 0.0039 99.2 0.0044 99.7 0.0030 99.6 0.0048 99.5'
8 0.0033 998 0.0018 999 0.00!1 999 0.0022 998
9 0.0014 1000 00005 1000 0.0009 1000 00016 1000
TABLE 4. EIGENVALUES OF RELATIVE ZONAL CLOUDINESS
n(0) = 0.2 n(0)= 03 n(0) = 03 n{0) = 05
n«== 05 n= 04 n= 0.5 n-— 07 /113
__ N=u N=15 N =2 ' =28 L==
Q| S(X)) 1077 Ry | S(X:) 1072 Ay ’S()(,)-l()ﬂi Ag !SfX.)-lO'? Aig

0.2465 55.0 0.2373 549 0.0974 48.6 0.3629 67.4
0.1145 808 0.0720 716 0.0604 78.4 0.0821 825
0.0410 90.7 0.0541 84.0 0.0170 823 0.0447 909
0.0170 945 0.0339 92.0 0.0155 70.0 0.0233 95.3
0.0129 97.2 0.0205 96.5 0.0116 95.4 0.0116 97.4
0.0076 99.0 0.0076 98.6 0.0050 98.0 0.0093 99.0
0.0030 9.7 0.0055 99.9 0.0024 99.4 0.0037 9.7
0.0013 99.9 0.0004 99.9 0.0009 9.9 0.0012 99.9
0.0004 100.0 0.0005 100.0 0.0002 100.0 0.0003 100.0

OO NDN W=

Solution of this problem amounts to linear conversions of the random
fields by averaging with a weighting function (see Chapter 1, Section 4).

In what follows we will consider the relationships among the dispersions,
autocorrelation functions, and spectral densities of the amount of clouds at
the zenith with the corresponding statistical characteristics of the cloudiness
parameters averaged over space or over the sky. Account has been taken in this
case of the relationship of the statistical characteristics of parameters such
as the amount of relative cloudiness by zones or over the sky to the distance
between the observer's station and the lower boundary of the clouds.

In deriving the formulas relating the statistical characteristics of
cloud coverage of the zenith to the statistical characteristics of the cloudiness
parameters averaged over space, we shall assume the cloud field to be isotropic.
This restriction, which is in keeping with the current level of our information
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on cloud field structure (see Chapter 1, Section 4), substantially simplifies
the design equations obtained in the following.

Xz XJ
’ 051
0.5 -
0 = T T
oy J
80 #
-05 4 -
Figure 54. Third Eigenfunctions of
Amount of Relative Zonal Cloudiness

Versus Zenith Distance of Zone.
Figure 53. Second Eigenfunctions of
Amount of Relative Zonal Cloudiness We apply two equally valid
Versus Zenith Distance of Zone. approaches to solve these problems:
firstly, averaging of the statistical
characteristics of the presence of
clouds at the zenith with weighting functions and, secondly, filtration of the
spectral densities (see Chapter 1, Section 4).

1. Averaging of the Statistical Characteristics of the_Pr¢§encev9£“ngpds
with Welghtlng Functlons

a. Averaging over Circumferences

In the case of averaging over circumferences the mean amounts of clouds on

circumference R and at the zenith coincide:
2nR

m:ﬁéf n(0)ds=n(0), (3.25)

in which ds is an element of the circumference.
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If the cloud field is isotropic, correlation of the presence of clouds at /118

points M' and M" of the circumference R depends only on distance L = (x1 - xz) +

+ (yl - y2)2 between them or on angular distance ¢ (Figure 55). This makes it

possible to derive from (1.32) a simple formula for the dispersion of the amount
of clouds on the circumference:
2

2n
onn -_—%::’-f (27 — @) rno (@) do, (3.26)
0

in which Gn(o)’ rn(o)(¢) are the dispersion and correlation function of the

presence of clouds at the zenith.

J Calculation of the correlation

function of the amount of clouds

on circumferences is a more
laborious problem. Let us consider
the general case, in which the
averaging is performed over circum-
ferences of different radiuses R1
and Rz. The reciprocal correlation
function of the amount of clouds on
the circumferences is expressed

by the following formula:

2
— On(0)
fnnnn, ()= 47200 5 On p,
(3.27)
2n 2
ff no(L)dp1 des,
Figure 55. Diagram of Averaging of o0
Random Function over a Circumference. in which
L=[R2+R2+8B —2R.R; cos (¢1 — ¢2) —
— 2Ryl cos @1+2Rad cos 2], (3.28)
and o and o, are the root mean square deviations of the amount of clouds on
rl r2
circumferences of radiuses R, and R_.

1 2

In the general case formula (3.27) is susceptible only of numerical inte-
gration. However, if, for example, the correlation function of the presence
of clouds at the zenith rn(O)(L) may be approximated by the even power series

rao(L) =1+ail?+ ... +aml®™ (3.29)

then formula (3.27) may be integrated analytically and we finally obtain
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2
Tnann, (1) =‘¢773L{ l+ai[R{-R2+4-12)+

On ,,Ian ®,
+aRE4-RE+ I H-4RFRAH4RA+4ARZE] 4 . . . -
m
+an[ 3 X (C:;C,‘-,._h)zR‘!m—k—i)Rth[z;'] }'

Rmel jumd

(3.30)

in which Cﬁ and C;-k are combinations of m and m-k elements relative to k and i. /119

When R1 = R2 = R formula (3.30) is simplified and the autocorrelation

furiction of the amount of clouds on the circumference assumes the form
3
___On@
7,0 7, { 1-+a1[2R?+ 2] 4-a:[ 6R - i +-8R*E]+ .. . + (3.31)

+aml i' i’(c:tcm—k)zR”‘"‘—‘)[z‘ }

h=0Q =0

In the particular case, if R2 = 0 and 7 = 0, we obtain from formula (3.27)

the following formula for the correlation coefficient between the amount of
clouds averaged over the circumference and the amount of clouds at the center

of the circumference: On®
Tnm 5 (0) =~ rn@(R)
R

(3.32)

b. Averaging over a Circle

Since the averaging is in this instance performed by areas, in the calcula-
tions the multiplicity of integration is doubled in comparison to the averaging
by circumferences of (3.25)-(3.27).

In averaging by circles the mean amount of clouds on a circle, ns(O),

coincides, as it does in the previous case, with the amount of clouds at the
zenith:

ns(O)=ﬂ}?2ffn(0)dxdy=n(0)' (3.33)
S

In this instance S = nRz is the area of the circle.

The dispersion of the amount of clouds over a circle is expressed by the
quadruple integral

2 a (') 7 AR r g
ot = fjffr(M W) dx’ dy’ dx” dy”, 5.30)
(nR?*)
which we reduce by means of the conversions proposed in [2] to the single
integral
2 _401:(0) [ L 12 7]
‘.ans ./rﬂ(o)(L) arccos —44- 2R —ER—VI——‘;—RE]/.dL. (3.35) /120
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The reciprocal correlation function of the amount of clouds over circles
of areas S, and S_ is also expressed by a quadruple integral similar in form to

1 2
that of formula (3.34):
0 0)
I'nslrnsz([) ﬂszR‘? 2 ffff rn(oj(Mi, Mz)dx.ay,dxzdyz, (3.36)
Bl
in which M) and M2 pertain respectively to circles of areas S4 and S2 the dis-

tance between the centers of which equals 1.

With S1 = S2 we reduce the quadruple interval to a double one by the method

developed in [2}, and formula (3.36) for the autocorrelation function for the
amount of clouds over a circle then assumes the form

2R-1
ng (1) =2 ,,sz o;.«»[ J rao(LyLdL j G, L,p)dp+

(3.37)
2R+l
+f rn(o)(L)Lde G, L ¢)d¢] when [<2R,
2R
and
H+2R

rog (1) =y 2R °n<°>_[ m(L)Lde G(, L, g)de

leR

when {>2R,

in which
4Rz -2 |2

Y==arccos 5L . (3.38)

and

YE+2Licos g+ L%
2R -
yzz+2ucos pt12 V‘ . P+2Licos p+L2
4R?

The practical calculations based on formulas (3.34)-(3.39) are numerical
ones only.

G(l, L, p) =arccos

(3.39)

c. Averaging over the Sky /121

Within the framework of linear conversions the statistical characteristics
of relative cloudiness can be obtained only in approximation. No allowance is
made in this case for the increase in the amount of clouds toward the horizon.
A simplification such as this yields considerably understated values for the
amount of relative cloudiness (see Section 1 of this chapter). At the same time,
the dispersion of relative cloudiness obtained is only slightly understated and
the correlation is exaggerated. This is due to the low weight of the contribution
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made by the zone around the horizon in relative cloudiness fluctuations. Sinc
the design formulas for the dispersion and correlation functions of the amount
of relative cloudiness do not lend themselves to simplifications, it is
advisable to calculate them by the spectral density filtration method.

)

The spectral densities for the averaged cloudiness characteristics are
obtained only in numerical form, by subjecting the corresponding correlation
functions, (3.27), (3.30)-(3.32), (3.36), and (3.37), to the Fourier transform.

2. Spectral Density Filtration

a. Averaging over Circumferences

In averaging over circumferences the weighting function for transition from
zenith coverage to the amount of clouds over a circumference is of the form

] 21R when r=R,
=u(ry= JT 3.40
u(r, @) =u(r) 5 when re<R. ( )

The two-dimensional frequency characteristic of the filter is obtained from the
weighting function by means of the Hankel transform:

@,(w)=27zfu(r)fo(mf)fd'=10(wR)v (3.41)

in which JO(wR) is the zeroth order Bessel function and w is the circular fre-

quency.

The two-dimensional spectral density of the presence of clouds at the /122
zenith 52 n(0) is transformed by multiplication by the square of the filter

frequency characteristic for random functions H,(w) = Hz(w) = $22()

So.np (@) =T (wR) Sz.n(0). (3.42)

The dispersion and correlation function of the amount of clouds over the
circumference are determined. by means of the inverse Hankel transform from the
formulas

0 n =27 [ Sa.np (@) 3 (@R) @ dw
13

(3.43)
and 0p
Tan () =—3— | Sanud3(0R)o(0l) 0 do.
R af-,,?f nxdo (wR) Jo(wl)w (3.44)
The one-dimensional spectral density in the cloud field cross-section is
nbtained by integrating 82 n relative to one frequency component:
>R
Snx (wx) = F]zo(a)R)Sz,n,((ﬂ) doy, (3.45)
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in which  g=Yol2t+o/
By averaging over the circumferences of radiuses R1 and R2 we obtain the

formula for the filter of two-dimensional reciprocal spectral density of the
amount of clouds over the circumferences in the form

H:(w, Ry, R2) =Jo(wR1) Jo(wRy2). (3.46)

In this case, as with formulas (3.42) and (3.44), the two-dimensional reciprocal

_density and the reciprical correlation function of the amount of clouds over the

circumferences are expressed by

Sz.n,.l.n x, (@) =Jo(@wR1) Jo{wR2) S2,n0) (w), (3.47)
2 n
f’nn.l. (l) = a’l.‘Un.' sz,nnl,-n.’ (“’)JO(th)Jo(sz)lo(ml)wdw (3. 48)
b. Averaging over Circles /123

The weighting function for transition from zenith coverage to the amount of
clouds over a circle in polar coordinates r, ¢ is expressed by

1 <R
u(r, @) =u(r)= ] wRe when 77 (3.49)
0 when r>R,

and the spectral density filter in this case has the frequency characteristic

Hz(w’ R) =-—M

(@R)1 (3.50)
in averaging over circles of radius R, and
4J1(wR:) 1 (wR
Ha(w, Ry, R3) =— 0)2‘R|R‘2( 2) . (3.51)

when we average over circles of radiuses R1 and Rz.

The filtered two-dimensional spectral densities, dispersions, correlation
functions, and one-dimensional filtered spectral densities for the amount of
clouds over a circle are obtained as with formulas (3.42)-(3.48).

c. Averaging over the Sky

If the screening effect is disregarded, the weighting function for transi-
tion from zenith coverage to the amount of relative cloudiness in polar
coordinates assumes the form

1 z
u(r,@)=ulr) =5 <72y 2yh ° (3.52)

We see that the weighting function for the amount of relative cloudiness also

depends on altitude Z of the lower boundary of the cloud cover. In the general
case Z is the distance between the observer and the clouds.
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The frequency characteristic of the filter -for the weighting function of /124
(3.52) may be represented in the form

Hy(w) =e~?%. (3.53)

the one and two-dimensional spectral densities, dispersion, and correlation
function for relative cloudiness are obtained as they are with formulas (3.42)-

-(3.48).

As may be seen from the foregoing, all the frequency characteristics of the
filters are expressed in analytical terms. At the same time, the dispersions,
correlation functions, and one-dimensional spectral densities from the two-
-dimensional spectral densities are obtained only in numerical form.

It is to be noted that no general recommendation may be made as regards
use of the direct averaging method or the linear filtration method. The
choice of method depends on the specific form of correlation function. In
both instances it is advisable to approximate the correlation function in order
that as many analytical calculations as possible may be performed. This makes
it possible to reduce the error (noise) which inevitably occurs in the case of
numerical calculations.

In approximating the correlation function we must bear in mind that not
all of the correlation functions of the presence of cloudiness obtained by way
of experiment may be the correlation function of a two-dimensional isotraopic
random field. This is due to the fact that the total number of functions which
may be used as correlation functions of isotropic random fields is always much
smaller than the total number of functions which may be used as correlation
functions for one-dimensional processes [27].

Expanding the correlation function of the presence of cloudiness at the
zenith into the series

@ () =% arcsin e—oltl=4 ﬁ' [29(0) 2

e—atitt
A (3.54)

i=1
in which @1(0) is the ith derivative of the probability integral, for one-

-dimensional and two-dimensional spectral densities we have respectively

Soymt S (PO ai (3.55)
L it a2 4-w?
2 & [29(0) ] ai
Sew=t SAPZOL el (3.56) /125

i=={

Formulas (3.53), (3.55), and (3.56) have been used in calculation of the
statistical characteristics of relative cloudiness.

Transition from statistical characteristics of cloudiness at the zenith to
averaged ones has been considered in the foregoing.
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With increase in the degree of complexity of conversion the spectral fil-
tration method is in the majority of cases known to be preferable to the method
of direct averaging of statistical characteristics. The inverse transitions
from the statistical characteristics of averaged cloudiness parameters to
statistical characteristics of cloud coverage of the zenith or transition to
statistical characteristics of other averaged parameters of cloudiness can be
accomplished only by the spectral density filtration method. The inverse
transformations always involve greater errors than does averaging.

Formulas (3.25)-(3.56) derived in the foregoing fully resolve the problems
set in this section. All the integrals entering into these formulas can be
calculated, but derivation of the final design formulas in analytical form
involves tiring operations which in the majority of cases it is impossible to
avoid without numerical integration. The results of calculations based on
formulas (3.25)-(3.56) and comparison of these results with empirical data will
be discussed in the following section.

Section 6. Statistical Characteristics of Averaged Cloudiness Parameters

It is to be seen from the formulas derived in the preceding section that
in the case of averaging over circumferences or circles the statistical
characteristics depend on radius R, while the statistical characteristics of
the amount of relative cloudiness depend on the distance between the observer
and the cloud layer. It is to be noted that the coverages of the directions of
sighting averaged over the azimuth which were obtained in the processing of
photographs of the sky (see Chapter III, Section 1) correspond to averaging /126
over circumferences of a radius of

R=2 tam}, (3.57)

in which Z is the distance to the cloud layer. In subsequent calculations the
mean rate of advance of a cumulus cloud field has been assumed to be v = 24
km/hr, that is, a distance on the cloud field of 4 km or Z = 0.4 tz corresponds
to a time interval of 10 minutes. In this case tZ is the distance in minutes
between the lower boundary of the cloud cover and the surface of the Earth
obtained by means of the congelation hypothesis. We additionally assume that

the bases of cumulus clouds are situated at an altitude of Z = 1 km from the
Earth's surface, this corresponding in approximation to their mean real altitude.
The relationships of the dispersion of the amount of clouds on a circumference

to zenith angle ¥ (radius R), as calculated with formula (3.26), are shown in /127
Figure 56 for zenith cloud coverages n(0) = 0.5 and 0.1 (0.9). The experimental
results obtained from sky photographs are entered as ddts. Since the dispersions
of the presence of cloudiness averaged over a circumference have been normalized
by the dispersion of the presence of clouds at the zenith, the relative dis-
persions given are at the same time the coefficients of efficiency of averaging
over circumferences (see formula (1.22)). As is shown by Figure 56, in the

case of averaging over circumferences the normalized dispersions depend only
slightly on the mean coverage of the zenith. Close agreement with the empirical
data is observed in this instance.
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The dispersion of the amount of
6> clouds over a circle, as calculated
from formula (3.34), is shown in
Figure 57. It is to be seen that the
relative dispersion of the amount of /128
clouds over a circle (coefficient of ~—
averaging effectiveness) decreases
somewhat more slowly with decrease in
the radius (zenith angle) than does
the dispersion of the amount of clouds
over a circumference. As with the
dispersion with the amount of clouds
over a circumference, close agreement
is observed in this instance between
the theoretically calculated values

of the dispersion of the amount of
clouds over a circle and the empirical
data (the dots in the graph), as well
Y T = as slight dependence on the mean

0 30 60 9 Vv coverage of the zenith. It is to be
noted that the empirical data on the
dispersion of the amount of clouds
over a circumference and over a circle
have been obtained on the basis of
photographs of the sky. Hence at

Figure 56. Dispersion of Presence of
Clouds Averaged over Almucantar

Versus Zenith Angle ¢, Curves plotted
on the basis of formula (3.26): 1,

n0) = 0.3 2, n(0) = 854_""3‘12‘_"?' zenith angles & > 50°, when the shading
n(g;rf 0 S'aba. (05 ?(O 5_ Te is appreciable, understated values
= U0 ®,n oo are obtained from the sky photograph

for the dispersion of the amount of
clouds over a circumference and over a circle in comparison to those calculated
from formulas (3.26) and (3.34).

The normalized dispersion (coefficient of efficiency) of the amount of
relative cloudiness depends only on the altitude of the lower boundary of the
cloud cover and on the mean coverage of the zenith.

Making use of frequency characteristic (3.53), approximation (3.54), and
inverse Hankel transform (3.54), we obtain for the dispersion of the amount of
relative cloudiness

2
o= 3 {FCi— 20 CiaZ[Sy(2iaZ) — No(2ia2) ]}. (3. 58)
i=135.. *
In this formula S0 is the Struve function, N0 the Neumann function, and
2 i) 2
C;=_Lia__((9_]_' (3.59)

x (i—1)!

Figure 58 illustrates the course of dispersion of the amount of relative
cloudiness at mean zenith coverages n(0) = 0.5 and 0.1 (0.9) calculated by the
spectral density filtration method. It is to be seen that the normalized dis-
persion of the amount of relative cloudiness also depends only slightly on the
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mean coverage of the zenith. At Z = 0 the dispersion of the amount of relative
cloudiness approximates the dispersion of the amount of clouds at the zenith.
They coincide if the cloud thickness is slight, that is, h =+ 0. According to
the calculations (Figure 58), to an observer on the ground (Z = 1 km) the
dispersion of the amount of relative cloudiness is 8-10% of the dispersion of
the presence of clouds at the zenith. - At the same time, it has been found by
experimental studies with a spherical mirror that the dispersion of the relative
cloudiness is for individual observations 3-13% of the dispersion of the presence
of clouds at the zenith. As may be seen, there is entirely satisfactory agree-
ment between the measured and the calculated relative cloudiness dispersions.

If in calculations based on formula (3.58) the correlation functions of the /130
individual observations are used in place of the correlation function averaged
over the observations, the agreement between the measured and the calculated
relative cloudiness dispersions is greatly improved in comparison to the data
given in the foregoing.

2
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~
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0

Figure 57. Dispersion of Amount of Absolute Cloudiness
Averaged over Circles Versus Angular Radius & at Z = 1

km. Curves plotted on the basis of formula (3.34): 1,
n(0) = 0.1; 2, n(0) = 0.4 and 0.6. Empirical data:

x, n(0) = 0.2; +, n(0) = 0.3; ©, n(0) = 0.5.

The correlation functions for the amount of clouds over a circumference
and for the amount of relative cloudiness have been calculated by the spectral
density filtration method. To ascertain the level of noise in calculation the
correlation functions of the amount of clouds over a circle have been
calculated both by the spectral density filtration method and by averaging the
correlation function of the presence of clouds at the zenith. Both methods /131
yielded identical results, with a divergence of less than 0.5%. Figures 59-61
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show respectively the correlation functions for the amount of clouds over a
circumference, a circle, and the sky. It is to be seen that in averaging over
circumferences the correlation is greater than in averaging over circles having
the same radiuses, while the correlation function of the amount of relative
cloudiness approximates the correlation function obtained in averaging over a
circle of a radius of R = Z tan 60° (see Figurés 60 and 61).

1 The weight of the higher
frequencies is reduced by
averaging in spectral densities,
The effect of averaging on the
spectral density is clearly
illustrated by Figure 62,
which shows the two-dimensional
spectral characteristics of
the filters calculated with
formulas (3.46), (3.50) and
(3.53). The frequency
characteristics of all the
filters decreases smoothly
with increase in the frequency.
The most abrupt drop is
exhibited in this case by the
characteristics of the filter
for transition from relative
cloudiness, and the gentlest
slope by the characteristics
of the filter corresponding
h T ] — - to averaging over circles.
More rapid decline of the
frequency characteristic of
the filter with increase in

/132

Figure 58. Dispersion of Amount of

Relative Cloudiness Versus Height of
Lower Boundary of Clouds (Z in km or

tZ in Min):

1, n(0) = 0.1; 2, n(0) =

frequency denotes greater
smoothing of the higher fre-
quencies, that is, a filter

= 0.4-0.6. such as this averages better.

The one-dimensional spectral densities of the presence of clouds at the
zenith were given in Figures 38 and 39, but the frequency characteristics of
the filter calculated from formulas (3.46), (3.50), and (3.53) may be applied
only to two-dimensional spectra; hence for the sake of clarity we present in
Figure 63 the one-dimensional and two-dimensional spectral densities of the
presence of clouds at the zenith calculated on the basis of approximation
formulas (3.55) and (3.56).

/133

The one-dimensional spectral densities of the presence of clouds at the
zenith and the amount of relative cloudiness obtained by the filtration method
are shown in Figure 64. We see that frequencies above w > 0.4 min ! are absent
from the spectral densities of relative cloudiness, that is, a substantial
contribution is made by frequencies w < 0.4 min~! for periods of a duration of
more than 16 minutes. It is to be noted that we have not thus far determined the
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correlation functions and spectral densities of the amount of relative cloudiness /134
by experiment. It follows from the foregoing that when it is necessary to

determine the correlation function and spectral densities of the amount of

relative cloudiness by way of experiment the optimum time interval between

readings is longer than 2 minutes.
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Figure 59. Autocorrelation Functions of Amount of
Absolyte Cloudiness Averaged over Almucantar Versus
t in min or x in km: 1, Correlation Function of

Presence of Clouds at the Zenith at n(0) = 0.4-0.6;
2, 9 = 30°, n(0) = 0.1; 3, & = 30°, n(0) = 0.4-0.6;
4, 9 = 60°, n(0) = 0.1; 5, ¥ = 60°, n(0) = 0.4-0.6.

Comparison of the dispersions, correlation functions, and spectral densities
in averaging over circumferences and circles reveals that averaging over circum-
ferences is the more effective. The method of processing photographs of the sky
is based on the last-named circumstance (see Section 1 of this chapter). /135

Section 7. Relationships Between Statistical Cloud Characteristics and Turbulence

‘Structure at the Level of Clouds

Since the genesis, development, and disintegration of cumulus clouds is
closely associated with the vertical flows of air at the level of the clouds and
in the vicinity of this level, the statistical characteristics of cloud coverage /136
of the zenith may be utilized for indirect assessment of the statistical
structure of the vertical components of turbulent flows at the level of the
lower boundary of the cloud cover.
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Figure 60. Autocorrelation Functions of Amount of
Absolute Cloudiness Averaged over Circles Versus t
in min or x in km: 1, Correlation Function of
Presence of Clouds at the Zenith at n(0) = 0.4-0.6;
2, % = 30°, n(0) = 0.1; 3, & = 30°, n(0) = 0.4-0.6;
4, ¥ = 60°, n(0) = 0.1; 5, ¥ = 60°, n(0) = 0.4-0.6.
7, (t)
10
/132
as 4 2
/
0 5 0 ¢

Figure 61. Autocorrelation Functions of Amount of Relative
Cloudiness Versus t in min: 1, n(0) = 0.1; 2, n(0) = 0.4-0.6.
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Figure 62. Two-Dimensional Spectral Characteristics of
Filters for Averaging of Amount of Clouds Versus w in
Min ! or Versus Zw: 1, Over Hemisphere; 2, Over Circum-

ference at & = 60°; 3, Over Circle at ¥ = 60°; 4, Over
Circumference at & = 45°; 5, Over Circle at & = 45°,

Let us consider the simplest model of distribution of the velocities of
vertical air motion near the lower boundary of cumulus clouds. For this purpose
we assume that flows of constant speed directed upward are observed within the
limits of the visible bases of the clouds, and flows directed downward between
the clouds. It can easily be seen that for this model the correlation functions
and spectral densities of the vertical wind speed components fully coincide
with the corresponding characteristics of the presence or absence of clouds at
the zenith (see Section 2 of this chapter). The description provided by such
a model as this of the vertical turbulence component is of course very approxi-
mate.

The few studies conducted up to the present time of the structure of
turbulence in the case of cumulus clouds [67-72] have shown that the vertical
speeds of turbulent flows are very chaotic in distribution both within clouds and
outside them. Ascending and descending vertical flows are observed in this
instance both in the clouds and in the gaps between them. On the average the
cross-section of ascending flows in a cloud are always smaller than the area of
the base of the cloud, representing only 50-80% of it. At the same time,
descending flows outside a cloud are observed chiefly around a cloud with a
cross-section approximately equalling the area of the base of the cloud. The
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maximum of the vertical flow speeds in a cloud is only slightly correlated with
the dimensions of the base of the latter [70]. High vertical flow speeds are
observed both in small and in large cumulus clouds.

S{w)

Sp ()

10

054

0 30
Figure 63. Spectral Densities of the Presence of
Clouds at the Zenith Calculated with Formulas
(3.55) and (3.56) Versus Circular Frequency w in
min 1. One-dimensional spectral densities: 1,
when n(0) = 0.1; 3, when n(0) = 0.4-0.6. Two-
-dimensional spectral densities: 2, n(0) = 0.1;
4, when n(0) = 0.4-0.6.

Analysis of the experimental studies of turbulent structure reveals that
in order to obtain more plausible information on turbulence it is necessary
in the proposed problem to abandon the assumption that the vertical flows are
constant inside and outside clouds. The experimental measurements made by us
of the presence of clouds unfortunately contain no information on the vertical
speeds at the level of the clouds. Hence we employ as the next approximation a /137
model in which the vertical turbulence component over the cross-section of the
cloud field is yielded by a continuous random function by the restriction of
which a relay signal is obtained describing the presence of clouds at the
zenith (see Chapter I, Section 6). Transition from the statistical characteristics
of the presence of clouds at the zenith to statistical characteristics of the
vertical turbulence speed is accomplished by means of the algorithms derived in
Section 2 of this chapter, on the assumption that the continuous random process
is a normal one. But it follows from what has been said that the distribution
of vertical velocities must be normal. The conversion employed by us of the
relay signal to a continuous function contains insignificant errors even when the
continuous process differs greatly from a normal one [28-30].
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Figure 64. One-Dimensional Spectral Densities of the
Presence of Clouds at the Zenith: 1, When n(0) = 0.1;

2, when n(0) = 0.4-0.6 and with Relative Cloudiness;

3, When n(0) = 0.1; 4, When n(0) = 0.4-0.6, as a Function
of Circular Velocity w in Min 1.

By approximating the correlation functions of the presence of clouds at the
zenith with formula (3.12) we find that the exponent of the spectral density of
the continuous process is 0.57 larger than the exponent of the spectral density
of the presence of clouds (sce Chapter III, Section 2). The exponent for
the spectral density of the vertical turbulence speed is consequently larger
than 5/3 according to our indirect measurements and ranges from 1.97 to 2.17.
This agrees closely with the results of empirical study of the structure of vertical
flow speeds over the cross-section of a cloud cover [70], according to which the
exponent equals 2.04, with a root mean square error of 0.15.

It also follows from the results of [70] that the low-frequency component
accounts for a large part of the energy in the spectral density of the vertical
speeds, and the periods corresponding to it are comparable to the linear
dimensions of the clouds. This latter circumstance is apparently due to
generation of vertical flow speeds by the release of latent heat.
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The predominance of low frequencies in this speed spectrum also explains
the close agreement between our results and those of [70].

According to the rule established by A. M. Obukhov, departure of the lléﬁ

exponent for the spectral density of the vertical wind speed component from the

value of 5/3 indicates arrival of energy from outside [27], for example, through
the release of latent heat. For this reason the stage of development, that is,

the rates of growth or disintegration of cumulus cloud fields, may be determined
on the basis of this departure value. '

It is to be noted that the results of this section are highly tentative
and hypothetical in nature. For the purpose of comprehensive study of the
possibilities of extracting from measurements of the optical properties of the
cloud cover information on turbulence at the cloud level it is necessary to:
conduct combined simultaneous experimental studies of the optical properties
of the cloud cover itself and of turbulence and its altitude.
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CHAPTER IV. STOCHASTIC STRUCTURE OF SHORTWAVE /139
RADIATION FIELDS OF THE CLOUD ATMOSPHERE

Section 1. Relationship Between the Statistical Characteristics of the Cumulus
Cloud Field and the Radiation Field of the Atmosphere

The radiation conditions of the atmosphere when cumulus clouds are present
are determined in the first approximation by the distribution of clouds over
the sky, the coverage of the Sun by clouds, and the mean relationship of cloud
and sky brightness between clouds to the zenith angle. By use of the information
on the statistical structure of cumulus clouds, to the study of which Chapter
ITT was devoted, it is possible to ascertain the basic patterns of variation in
radiation fluxes.

At zenith distances of the sun smaller than 50°, at which the apparent
coalescence of clouds is small, the variability of direct solar radiation in
time is similar to the variability of cloud coverage of the zenith. However,
the comparison of the recordings of direct radiation and of the presence of
clouds obtained respectively in measurement with an actinometer and with a low-
-inertia narrow-angle detector show that the variability of direct solar radiation
can be described only in approximation by a train of rectangular pulses. Aside
from the cases of absence of direct radiation (when the Sun is covered with clouds)
and of total radiation flux (there being no clouds in the vicinity of the Sun),
a situation is also observed (over 12-15% of the duration of observation) in
which the direct radiation flux has an intermediate value. The intermediate
gradations of the direct radiation flux are due to various factors. Firstly,
the Sun may be partly covered with clouds or covered by optically thin parts of
clouds; secondly, the considerable inertia of the actinometer smooths out the /140
abrupt changes in radiation; and thirdly, bright edges of clouds may enter the
field of view of the instrument. The variability of the direct radiation flux
measured by the actinometer is studied in detail in [73]. Taking into account
the inertia of the actinometer (see Chapter I, Section 3), the frequency of
appearance of clouds in its field of view (see Chapter III, Section 3), the
viewing angle of the actinometer [74], and the probability density of direct
radiation [73], we find that approximately 12% of the intermediate values of
direct radiation is accounted for by the transparency of the optically thin
parts of clouds, 10% by partial coverage of the Sun's disc with clouds, 42%
by actinometer inertia, and 36% by the edges of clouds entering the field of
view of the actinometer.

O0f the estimates made the greatest error characterizes the role of optically
thin edges of clouds, which are the most variable and depend on the variability
of cloudiness from observation to observation. This requires further more
detailed empirical studies.

The analysis made in the foregoing indicates that of the differences between
the results of measurements performed by means of narrow-angle detectors and
actinometers about 20% are accounted for by the transparency of clouds and
80% by other factors. On the basis of measurements of the presence of clouds
made with narrow-angle detectors it is consequently possible to determine the
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structure of the variability of direct radiation with smaller error than by
measurement of direct radiation with the actinometer. As has also been demon-
strated in [73], the fictitious transparence may be eliminated from the results
of measurements with the actinometer in the course of processing by skillful
choice of the cutoff level. This also substantiates the use of the results of
direct radiation measurements for indication of cloud coverage of the sky in
the direction of the Sun (Chapter III, Section 2).

The structure of scattered radiation variability, as with the relationships
among cloud characteristics (Chapter III, Section 5), is linearly related to
the variability in brightness at the zenith. In this case as well we assume
the brightness fields to be isotropic in space. We also assume that with
fluctuation in brightness its indicatrix does not vary either for clouds or /141
for the clear sky between clouds.

On transition from the brightness of the zenith to scattered radiation
the weighting function assumes the form
1 ; X
u() =Dy [n(3) [n (D) +c () () Jcos #sin 4.1

in which D! is the mean descending flux of scattered radiation and In(ﬂ), Ic(ﬁ)

is the relationship of the mean cloud brightnesses and clear sky to the zenith
angle. In the first approximation we assume weighting function (4.1) to be
isotropic, that is, we disregard the relationship of brightness to the azimuth.
It is to be noted that, on the one hand, there is at the present time no informa-
tion, either empirical or theoretical, with which to allow for the relationship
of sky brightness to the azimuth in the presence of cumulus clouds. On the
other hand, the flux of scattered radiation as a value averaged over the sky
does not contain the fine structure of brightness variability for individual
zenith directions. Hence to ascertain the basic patterns of scattered radiation
weighting function (4.1) may be applied to the statistical characteristics of
cloud coverage of the zenith, for which the most complete array of empirical
studies is available at the present time (see Chapter III). This latter circum-
stance means that for all zenith directions of sighting within the limits of
clouds, as well as in the gaps between them, the brightness is constant and its
variability in time or in space may be simulated by means of a 'rect' signal.

We effect transition from the statistics of the brightness at the zenith to the
statistics of the scattered radiation flux by deriving the spectral charac-
teristics of filters for three forms of relationship of mean brightness to

the zenith angle.

If the sky brightness does not depend on the zenith angle the spectral
characteristics of the filter for transition from zenith brightness to scattered
radiation flux is expressed by

2 i '
Ha () =T (02)*[Hi(joZ) I (4.2)
in which Hfl)(ij) is the third-order Bessel function of the fictitious argument

(Hankel function).
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Formula (4.2) was obtained by means of the Hankel transform from the /142
weighting function in polar coordinates

“(RY =’y (4.3)

in which Z is the distance between the lower boundary of the cloud cover and the
level of observation, and R is the radius on the cloud field, which is related
to zenith angle ¢ by the equation tg & = R/Z. ,

If the mean sky brightness decreases in the direction of the horizon in /
proportion to cos ¥, the weighting function for the transition from zenith
brightness to scattered radiation flux is of the form |

32?2
u(R)=:§Z?ZE¥fﬁF5—' (4.4)

There corresponds to the latter filter spectral characteristic
H; () = (0Z+1) %202, (4.5)

According to the formulas of G. V. Rozenberg [32], the course of sky brightness
for optically thick cloud layers is proportional to (1/3 + cos #).

The weighting function is in this case expressed by \ \

72 Z3 . ! :
u(R) =g, zixRy? T a(Z+RO* NCRO]
and the spectral characteristic of the tilter corresponding to it by {/
Ha(o0) = [ — 222 H (jo2) +Z-e7 (1-+a2) | P

On increase in brightness toward the horizon in proportion to sec ¥ the |
weighting function and the spectral characteristic of the filter for transitio
from zenith brightness to scattered radiation flux coincide with the corresponding
functions of the transition from presence of clouds at the zenith to relative '
cloudiness (see formulas (3.52) and (3.53)). The filter spectral charac eristi%s
obtained are presented in Figure 65, which also illustrates the course of the
filter characteristic for transition from the presence of clouds at the zenith |
to relative cloudiness. The trace of the characteristics of the first three \
filters is virtually the same. It is to be observed that the increase in \
cloudiness toward the horizon was disregarded in derivation of formulas (4.2)-
-{4.7), as in analysis of the relationships among the statistical cloudiness
characteristics (Chapter III, Section 5). In the majority of cases the weighting
functions for transition from zenith brightness to scattered radiation flux
decrease with the zenith angle more than cos ¢ times faster than does the
weighting function for transition from cloud coverage of the zenith to relative
cloudiness. Thus because of the relatively low weight of the zone around the /144
horizon disregard of the increase in the amount of clouds toward the horizon
has no appreciable effect on the accuracy of determination of the dispersion,
correlation function, and spectral density.

If the brightness decreases with increase in the zenith angle in proportion
to cos ¥, the simple form of filter characteristic (4.5) permits derivation of a
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formula for the dispersion of scattered radiation in analytical form. By using
the two-dimensional spectral density of the presence of clouds at the zenith

in the form of (3.55), we can express the required dispersion as the sum of

the integrals

Ciwe 202 .
*p=2na Ef (a-"-12+m2)’/z (wZ+1)2dw, (4.8)
in which
C___2[¢“"(0) 12
a1
l'lz(Zu)
10
05 1
0 2w
0 04 08 «w,

Figure 65. Two-Dimensional Spectral Characteristics
of Filters Versus Circular Frequency w in Min ! or
Zm for Transition from Presence of Clouds at the

Zenith to Relative Cloudiness 1 and from Zenith
Brightness to Scattered Radiation Flux, if 2, I(¥) =
= const; 3, I(3) ~ cos ¥; 4, I(¥) ~ (1/3 + cos 9).

After the integration, having set w = aZ, it is convenient to write out
the dispersion in three parts:

*p= 0%+ 0%+ %, (4.9)
in which |
=2z Ci{T —aw[80(2iw)——No(2iw)]}, (4.10)

1=133,...
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oh=4nw 3 C;{2iw— miw[S1(2w)— N,(2iw) ]+

i=1,3,5,...

+[So(2iw) — No(2iw) ] }. (4.11)
Py=2n02 3 c.-{m(f-;ff—l)+—’2?-i2w[so(2iw)—No(2iw)]+
(4.12)

i=13.5,...
+in[Sy(2iw) — Ny (2iw) ]— g—zzw[sz(in) — Ny (2iw) ]} ,

and SO’ Sl’ S2 are the Struve functions and NO, Nl’ N2 the Neumann functions.
The relationship of the dispersion of scattered radiation in zenith
brightness dispersion units to the altitude of the cloud cover Z, with o = 0.3,

0.4, as calculated from formulas (4.9)-(4.12), is illustrated in Figure 66.

!
62 (2)
2
62 (0)
1.0
ar -
2
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7 - 1 B e
! 2 Zz
2.5 5 t-

Figure 66. Relative Dispersion of Scattered Radiation
Versus Altitude of Cloud Cover (Z in km, tZ in Min), as

Calculated with Formulas (4.9)-(4.12): 1, o = 0.4; 2,

a = 0.3.

We must point out that o = 0.3, 0.4 corresponds to a zenith coverage of
n(0) = 0.4 or 0.6 and 0.1 or 0.9 (see Chapter III, Section 2). It is to be
seen that the dispersion of scattered radiation depends but little on the mean
coverage of the zenith. In addition, the course of this relationship with
increase in the distance between the observer and the cloud cover is similar to
the course of dispersion for relative cloudiness.

/145
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The correlation function of the total radiation as the sums of the fluxes
of direct and scattered radiation may be represented in the. form

ro(2) =£“§r§(1)‘*f?"D{D(t_).‘f‘(;.zoy[fy_(f)—f-fl?,s‘(l)_]4,' (4.13) /146
. . 2 _ 2 2 . X . s s 2
in which OQ = 0g * op + ZGSGDrS,D is the dispersion of the total radiation, og

is the dispersion of direct radiation onto the horizontal surface, and Ts b and
>

T are the reciprocal calculation functions for direct and scattered radiation.

D,S
It is to be noted that the statistics of the total radiation may also be
expressed by spectral densities Ss(w), SD(w) and reciprocal spectral densities

SS D(w), SD S(w) of direct and scattered radiation
_ 0%sSs(w) 4+ 0%Sp(w) +0s0p]ds.0(w) +Sns(w) ) (4.14)

07Q

Se(w)
or, since the random processes representing variability S and D are substantial,

2 S ’ 2 —
So() __ 9% s(w) 4o DSD((U)"I'USSD‘[SS,D(O)) +Ssp(—w)] ‘ (4.15)
0%
The reciprocal correlation functions and spectral densities entering into
formulas (4.13)-(4.15) may either be derived from direct experiments or may be
obtained by theoretical calculations (see the following section).

The scattered radiation dispersion appearing in formulas (4.13)-(4.15) is
generally relatively small (see Section 4 of this chapter). Hence the correlation
function and spectral density of the total radiation is determined chiefly by
the correlation function or spectral density of the direct radiation and the
reciprocal correlation function or spectral density of the direct and the
scattered radiation.

Examination has been made in the foregoing of the relationships between the
statistical characteristics of the presence of clouds at the zenith and the
statistical characteristics of fluxes of direct, scattered, and total radiation,
but for the energetics of the atmosphere, and in particular for calculations
based on formulas (4.13)-(4.15), it is important to know the relationships among
the statistical characteristics of direct, scattered, and total radiation, and
these we will now undertake to analyze.

Section 2. Theoretical Analysis of Relationships Among Statistical Charac- /147

teristics of Fluxes of Direct, Scattered, and Total Radiation

It was demonstrated in the preceding section that the statistical charac-
teristics of direct, scattered, and total radiation are in the first approxi-
mation unambiguously related to the statistical characteristics of the presence
of clouds at the zenith. Hence the reciprocal correlation functions of the
fluxes can be obtained by using the relationships at the outputs of several
linear conversion systems (direct, scattered, and total radiation), when the same
random process (presence of clouds at the zenith) operates at the inputs [22].
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This probleém may be solved by two equally valid methods: firstly, averaging
with the corresponding weighting functions of the correlation function of the
presence of clouds at the zenith, and secondly, by filtration of the spectral
density of the presence of clouds at the zenith by means of the appropriate
filters.

In seeking the relationships between direct and scattered radiation we
employ the second method, which reveals the essential nature of the transforma-
tion more clearly.

The reciprocal spectral density of direct and scattered radiation is
obtained by filtration of the two-dimensional spectral density of the presence
of clouds at the zenith. This filtration can be accomplished by means of the
square root of the corresponding spectral characteristic of the filter for
scattered radiation in (4.2), (4.5), and (4.7), that is, :S&n(n.==V7ERTY13§QZL

The two-dimensional spectral densities of direct and scattered radiation
are expressed by

Sz,s.D((u)=~g:—ijH1W(ij)Sz,nw)(w), (4.16)
Sasp(w) ="2e-02(1 +02)S
.S, = o W ) 2 00 (w ) y ( £1 . ]':7 )

7s
(L)

VA .
Ses0(w) = [~— ”g’ “HW (jwZ) +—§~ e-9Z (1 +wZ) ]s ()

(4.18)

for isotropic brightness, if the brightness descreases in proportion to cos ¥
and.1/3 + cos ¥ with increase in the zenith angle.

The normalized reciprocal correlation function of direct and total radiation /148
is of the form

=987 1y 3192 o (1),
rs.o(t) e rs( )+?Q rs.o(t) (4.19)

There correspond to the latter the one-dimensional and two-dimensional recipro-
cal spectral densities

Ss(w) =" Ss(w) 4% Ssn(w), (4.20)

and

Sz.s,o(w)ngz.s(w)’F%S?-s-D(w)‘ (4.21)

On the analogy of formula (4.19) the reciprocal correlation function of
scattered and total radiation is of the form

er(t)==§%r&n(0-+%%fv(”- (4.22)

From the latter we obtain the one-dimensional and two-dimensional spectral
densities
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Spo(w) =g—z Ss.n(w) +%; Sp(w) (4.23)

and o o
Sapq(0) =2 S25.0(w) +°28;p(w).
. 9e %e (4.24)

The root me%n square deviation of total radiation, GQ appearing in formulas

(4.19)-(4.24) is |expressed by the dispersions and root mean square deviations of
direct and scattéred radiation with the formula

oo= [ 0%+ 0%p-+20s00rsn(0) ]~

It is to be seen from formulas (4.14), (4.19)-(4.24) that the correlation
function and the spectral density of the total radiation flux, as well as the
reciprocal correlation functions and reciprocal spectral densities of the flux
of direct and total radiation and of scattered and total radiation, may be
determined if the correlation functions and spectral densities of direct and
scattered radiation, the reciprocal correlation function and reciprocal spectral
density of direct and scattered radiation, and the dispersions for direct,
scattered, and tetal radiation are known.

Since in the derivation of formulas (4.16)-(4.18) it was assumed that the /149
weighting function (distribution of brightness over the sky) does not depend on
the azimuth, the reciprocal correlation functions obtained in theory are even.
As a result the reciprocal spectral densities are real rather than complex
functions. In this instance the spectral densities are symmetrical, that is,
the relations
Ss.p(w) =Sps(w),
Se.n(w) =Spe(w),
Sse(w) =Sos(w). (4.25)

are valid for both one-dimensional and two-dimensional spectra. It follows that
coherence C(w) equals unity for all cases of reciprocal spectral density (see
formula (1.12)). Under natural conditions the atmosphere is nonisotropic and the
weighting function accordingly depends on the azimuth and in addition extends in
the direction of the Sun. Hence the empirically determined reciprocal spectra
are always complex, and the coefficient of coherence is always smaller than
unity (see Section 4 of this chapter).

The significance of the imaginary part of the reciprocal spectra, as well
as the difference between the measured coherence and unity, may be utilized for
evaluation of the validity of the theoretical formulas for description of the
statistical structure of radiation fluxes and the structure of clouds in the
real atmosphere derived in Section 5, Chapter III, and in Sections 1 and 2 of
this chapter. The derivation of formulas for quantitative evaluation remains a
task for the future.

Let us now proceed to analysis of the results of the empirical studies.
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Section 3. Empirical Data on Variability of Fluxes of Direct, Scattered, and
Total Radiation

For the purposes of empirical study of the variability in time and space of
radiation flux fields in the case of the cloud cover the fluxes of direct,
scattered, and total radiation were recorded on the ground and the fluxes of
total and reflected radiation from aircraft (see Chapter II). Up to the present /150
we have obtained 273 observations, of which 103 ground measurements and 23 air-
craft measurements have been fully processed. In view of the fact that the
variability of the direct radiation flux of the Sun is very near that of the
presence of clouds on the line of sight (see Section 1 of this chapter and
Chapter III), in this section we shall concern ourselves chiefly with discussion
of the results of study of the fluxes of scattered and total radiation.

To eliminate the influence of the diurnal variation in the scattered
radiation flux analysis was made of the dimensionless value D* = D/DO’ in which

D0 is the mean diurnal variation in the scattered radiation of a cloudless sky

as calculated from the empirical formula
—0.36
lh::OJQOnya —0.033, (4.26)

derived in [75] on the basis of data of the Tartu actinometric station. In this
formula my is the mass of atmosphere in the direction of the Sun.

The diurnal variation and total radiation were eliminated in a similar
manner. Analysis was made of the dimensionless value Q* = Q/QO in which Q0 is

the mean diurnal variation in the possible total radiation of a cloudless sky
for a given calendar day in Tartu, as calculated with the formula given in [76]

Sbcosﬂka

C=Trgsecoy (4.27)

In this formula S0 is the solar constant and g a coefficient depending on the

optical thickness of the atmosphere in the direction of the Sun and on the
albedo of the underlying surface. It is to be noted that formula (4.27) has
been employed in many studies [17, 77] to eliminate the influence of the diurnal
variation in analysis of the variability of total radiation.

The relative flux of total radiation Q* over the interval n = 0.2 - 1.0
undergoes linear decrease with increase in relative cloudiness (Figure 67).

The dispersion of the relative flux of direct radiation is expressed by the /151
dispersion of the presence of clouds, by the relation

0% = (500 - (4.28)

Hence, as with the dispersion of the presence of clouds, the dispersion of
relative direct radiation is at the maximum when n(ﬂCQ = 0.5 and decreases with

increase or decrease in cloud coverage in the direction of the Sun, coming to
equal zero if n(ﬂCQ =1 or n(é® = 0).
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The variability of total radiation is determined chiefly by the variability
of the direct radiation in the case of cumulus clouds. This is to be seen from
Table 5, in which the dispersions of direct, scattered, and total radiation are
présented for 3 observations. The total radiation dispersion also has a maximum
at n(9;) = 0.5 and decreases with increase or decrease in the mean cloud coverage

of the Sun. Figure 68 shows the root means square deviation of total radiation

Q* plotted against the amount of relative cloudiness. As may be seen, its

maximum is situated around n = 0.6. A mean coverage of the Sun (zenith) of

n(0) = 0.5 corresponds approximately to the latter value (see Chapter III, Section
1). Unlike the direct radiation, the root mean square deviation of total
radiation does not approach zero on transition from variable to unbroken clouds. /153
When n = n(0) = 1 the root mean square deviation of total radiation is determined
by the variability of scattered radiation. This circumstance explains the

asymmetrical course of Oqr 35 @ function of the amount of clouds relative to

n(0) = 0.5.
a .
0
| /151
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Figure 67. Mecan Relative Flux of Total Radiation
Versus Mean Amount of Cumulus Clouds (Ground
Measurements).
TABLE 5. RELATIVE DISPERSION OF RADIATION FLUXES. /152
3—4 Cu " 4—6 Cu 7—8 Cu
e —_
a%s/o%q 831-.10- 7.66-10-! 6.80- 10—t
aslog 9.12.10-! 875101 8.25.10-t
o%p/o?q 7.90-10-3 1.71.10-2 3.12.10-2
oofog 889-.10-3 1.31-10-t 1.77 . 10—
0s0p/a?q 812.10-2 1.13. 101 1.45.10~t
20s0p/02q 1.62. 10t 2.26- 10—t 2.90. 10t
os 2.66-10-! 3.10- 10! 3.56- 10—t
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0 as 0 n
Figure 68. Root Mean Square Deviation of Relative Total
Radiation Versus Mean Amount of Cumulus Clouds (Ground
Measurements).

The coefficient of variation in total radiation (Figure 69) undergoes linear
increase with increase in the amount of relative cloudiness up to approximately
n = 0.7, and then begins to decrease, at n = 1 coming to equal the corresponding
coefficient of variation for a cloudy sky (scattered radiation with n = 1).

The distribution functions of the relative fluxes were calculated for the
observations of direct, scattered, and total radiation in time. The probability
distribution functions of direct radiation have been studied in detail in 1731,
and the probability density of total radiation is presented in [77]. Examples of
the probability densities are given in Figures 70-72.
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Figure 69. Coefficient of Variation in Mean Total Radiation Flux
Versus Mean Amount of Cumulus Clouds (Ground Measurements).
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As may be seen from Figure 70, the probability density of the flux of /154
scattered radiation for cumulus clouds is monomodal and extends in the direction
of large relative fluxes, the more so the greater is the amount of relative
cloudiness. At the same time, the distribution function widens as the amount
of cloudiness increaseg. The elongation of the probability density in the
direction of large flux®s is apparently due to the nonlinearity of the relation-
ship between the optical thickness and the cloud brightness (for further
details see Sections 5, 6 of Chapter I and Section 6 of this chapter).

At the same time, the probability density of total radiation for cumulus
clouds is generally bimodal in form [77] (Figures 71 and 72). In this instance
the first mode corresponds to small values Q* (when the Sun is covered with
clouds). The second mode is determined by the direct and scattered radiation
(when the Sun is not covered with clouds). With increase in the amount of
clouds the probability of the first mode increases and that of the second
decreases. This circumstance is due to the decrease in the duration of sunshine /155
with increase in the amount of clouds.

/J(D’)j plo?)
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11 ! 1
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Figure 70. Examples of Probability Density of Relative
Scattered Radiation for Cumulus Clouds (Ground Measure-
ments): a, n = 0.3-0.4; b, n = 0.4-0.6; ¢, n = 0.7-0.8.

The influence of the direct radiation distribution function on the total
radiation distribution function is clearly illustrated by Figure 72, which shows
the probability densities of fluxes of direct and total radiation for the same
observation.

It is further to be noted that the distribution functions of fluxes of
scattered and total radiation coincide in the extreme cas€, that is, for un-
broken clouds. This is confirmed by comparison of Figures 70 and 73, which
show the probability densities of total radiation for unbroken Sc clouds.

/156
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Figure 71. Examples of Probability Density of
Relative Total Radiation for Cumulus Clouds
(Ground Measurements): a, n = 0.2; b, n = 0.8~
-0.9.

In accordance with the theoretical arguments advanced in Sections 5 and 6
of Chapter 3 and in Section 1 of this chapter, the correlation function of the
scattered radiation flux for cumulus clouds is similar to the correlation
function of relative cloudiness, but decreases somewhat more rapidly with
displacement in time. This is confirmed by Figure 74, in which the correlation
function of relative cloudiness is presented along with the correlation functions
of scattered radiation for individual observations. This correlation function
of relative cloudiness was calculated with the formulas given in Section 5,
Chapter III. The considerable dispersion of the empirically determined correla-
tion functions of the scattered radiation flux is in all probability due, in
addition to the errors in determination of this radiation, also to possible
differences in brightness structure and to the variability from observation to
observation in the mean amount of clouds and mean wind speed at the altitude of
the clouds.

Examples of the correlation functions derived by us of the total radiation
flux, averaged over the observations and grouped as a function of the amount of
clouds in the sky, are presented in Figure 75. Comparison of Figures 75 and 36,
in which the correlation functions for direct radiation (the presence of clouds)
are given, reveals that the correlation functions are similar sc long as the
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amount of cumulus clouds n < 0.7, 0.8 (n(0) < 0.6-0.7). On increase in the
amount of clouds (n > 0.8) the total radiation correlation function approaches
the scattered radiation correlation function. This may be verified by comparing
correlation function rQ* with n = 0.9 (Figure 75) with the correlation functions

of the scattered radiation flux given in Figure 74. There are substantial
differences between the correlation functions of the direct and the total /158
radiation despite the apparent similarity. While for the direct radiation flux
the correlation radius is at the maximum at n(0) = 0.5 and decreases with
increase or decrease in the amount of clouds, for total radiation the correlation
radius shown in Figure 6 is at the minimum when n{0) = 0.3 (n ~ 0.4) and in-
creases with increase or decrease in the amount of clouds. The correlation
radius of the total radiation flux exceeds the direct radiation correlation
radius by an insignificant amount so long as the amount of cumulus clouds n <

< 0.6-0.7 {(n(0) < 0.5-0.6). On further increase in the amount of clouds it /159
approaches the scattered radiation correlation radius. This behavior of the
total radiation correlation function is to be ascribed to the combined influence
of the variability of the fluxes of direct and scattered radiation. As may be
seen from examination of formula (4.13), the correlation function of total
radiation is determined by the correlation functions of direct and scattered
radiation, as well as by their reciprocal correlation. In this instance the
relative weight of the correlation functions is determined by the weight of their
dispersion in the total radiation dispersion. As is toc be seen from Table 5,

the dispersion of direct radiation predominates (70-90%) for mean amounts of
clouds. At the same time, the weight of the scattered radiation dispersion is /160
negligibly small (1-3%). A more substantial contribution (15-30%) is made by the
reciprocal correlation function of direct and scattered radiation, that is, the
correlation function of the total radiation flux is influenced only by
fluctuations in the scattered radiation operating in phase with the fluctuations
in direct radiation. This is illustrated by Figure 77, which shows the correla-
tion functions of the fluxes of direct, scattered, and total radiation for one
specific observation when n = 0.5 (n(0) = 0.4). It may be seen that the total
radiation correlation function repeats the course of the direct radiation
correlation function and is situated somewhat above it. The weight of the
fluctuation in direct radiation and that of the reciprocal correlation decrease
with increase or decrease in the amount of clouds relative to n(0) = 0.5, owing
chiefly to the decrease in dispersion of the direct radiation. As a result the /161
fluctuations in total radiation are largely influenced by the variability in
scattered radiation, which in this instance depend: only slightly on the amount
of clouds. This circumstance increases the radius of correlation of the total
radiation flux. Its spectral density is simultaneously contracted. Figure 78
shows the spectral density for standard radiation, Figure 79 the range of
variability of the spectral densities of total radiation, and Figure 80 the
spectral densities of total radiation for specific measurements. It is to be
seen that the lower frequencies predominate in the spectral density of scattered
radiation in comparison to the spectral density of total radiation.

The weight of the high frequencies in the spectral density of the total

radiation flux is at the maximum when n = 0.4 (n{0) = 0.3) and decreases with
increase or decrease in the amount of clouds.
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Figure 72. Examples of Probability bensity of Relative
Fluxes of Direct and Total Radiation for the Same
Observation at n = 0.6 (Cu) (Ground Measurements).

(a" The spatial structure of fields
pla of shortwave radiation has been
studied experimentally for strato-
cumulus and cumulus clouds. Air-
craft studies were conducted for
this purpose above the Ukraine
in 1967-1969 in collaboration with
the Ukrainian Hydrometeorological
Research Institute. 1In the case of
stratocumulus clouds flights were
flown both above and below the
a5 ) La P clouds, and in some instances inside
the cloud layer as well, at a
Figure 73. Examples of Probability distance of approximately 100 m /164
Density of Relative Total Radiation from the upper boundary. In the
for Unbroken Sc Clouds (Ground case of cumulus clouds within a
Measurements). mass all measurements were generally
conducted below the clouds.
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Figure 74. Examples of Autocorrelation Functions of
Scattered Radiation Flux (Solid Line Curves) and of
Relative Cloudiness (Broken Line Curves) for Cumulus
Clouds n = 0.5 (Ground Measurements, t in min).

Figure 81 a shows the mean autocorrelation functions of fluxes of shortwave
radiation and the albedo inside the layer, and Figure 81 b the mean correlation
functions for fluxes of total and reflected radiation measured below strato-~
cumulus and below cumulus clouds. Owing to the small number of observations it
was not possible to make a study of the correlation as a function of the amount
of clouds. The correlation functions of the descending flow and the albedo
inside the layer are similar in the case of the stratocumulus clouds. There is
a slight difference between them and the correlation function of the descending
flow. The correlation radius of the ascending flow generally exceeds the /165
correlation radius of the descending flow and the albedo. The large correlation
radius of the ascending flow is due to the considerable averaging over the
brightness field of the underlying surface, which participates in formation of
the ascending flow. In other words, the fluctuations- in the descending flow are
due chiefly to the variability in cloudiness above the aircraft, and the structure
of the ascending flow depends largely on the variability of the albedo of the
underlying surface as well as on the variability of the cloud cover both below
and above the aircraft. This circumstance increases the correlation owing to
the averaging over the area of the Earth's surface (the degree of averaging
depends on the altitude of flight). This is clearly illustrated by Figure 81 b,
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which shows the autocorrelation functions of descending and ascending flows for
cumulus clouds measured immediately below the clouds. The correlation functions
obtained under these conditions of the descending flow for cumulus clouds fully
coincided with the correlation functions of the presence of clouds at the /166
zenith. This is due to the slight averaging over space in flight at small
distances from the lower boundaries of the clouds and confirms the correctness
of the conclusions drawn in Sections 5 and 6 of Chapter III and in Sections 1
and 2 of this chapter regarding the similarity between the statistical
characteristics of the zenith coverage and the corresponding characteristics of
relative cloudiness and between the statistical characteristics of brightness
and the corresponding characteristics of flows under these conditions.

0 s ~--"w t

Figure 75. Autocorrelation Functions of
Total Radiation Averaged Over Observa-
tions and Grouped According to Amount

of Relative Cloudiness (Ground Measure-
ments, t in min): 1, n = 0.2 (Cu); 2,

n = 0.3-0.4 (Cu); 3, n = 0.5-0.6 (Cu);
4, n=0.7-0.8 (Cu); 5, n = 0.9-1.0

(Cu, St, Sc, Ci).

It is also to be seen from
Figure 81 b that the correlation
radius of the descending flow
below the cloud cover in the case
of stratocumulus clouds is on
the average twice as large as
the correlation radius in the
case of cumulus clouds. This
circumstance indicates that there /167
are different inhomogeneity scales
for individual cloud cover forms.
It is to be noted that establish-
ment of the quantitative relation-
ships between the typical scales
of individual cloud cover forms
remains a task for future
experimental studies. It is
logical for this purpose to
conduct studies with narrow-
-angle detectors, since in this
instance the results will contain
virtually no averaging over
area, and this will permit direct
comparison of ground and air-
craft data.

Figure 82 shows the mean
spectral densities of shortwave
radiation fluxes in flights
inside stratocumulus clouds

(corresponding to the correlation functions in Figure 81 a) in the linear fre-

quency range from 0.015 to 0.6 km 1. Figure 83 shows the mean spectral densities

of radiation fluxes for cumulus clouds corresponding to the correlation functions

of Figure 81 b. The spectral densities in logarithmic coordinates for the /169
fluxes in the case of stratocumulus and cumulus clouds are presented in Figures

84 and 85 respectively. We see that the spectral densities of the descending

fluxes may be described by relation S(f) ~ f—k

with a constant exponent k = 1.3

for statocumulus clouds and k = 0.62 for cumulus clouds.
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Figure 76. Correlation Radius (tO 5 in Min) of Total

Radiation Flux Versus Amount of Relative Cloudiness
(Cv) (Ground Measurements).
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Figure 77. Autocorrelation Functions of Direct 1,
Scattered 3, and Total 2 Radiation for One Specific
Observation for Cumulus Clouds with n = 0.5, n(0) =
= 0.4 (Ground Measurements, t in Min).
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Figure 78. Spectral Density, Averaged
over Observations, of Scattered Radia-
tion for Cumulus Clouds Versus Linear

Frequency f in Min ! (Ground Measure-

ments).

Section 4. Relationships Among

Variability of Fluxes of Direct,
Scattered, and Total Radiation

In what follows we present
the results of ground and aircraft
experimental studies of the rela-
tionships among direct, scattered, /170
and total radiation, information
on which is necessary in the
theoretical analysis made in
Sections 1 and 2 of this chapter.

Examples of reciprocal
correlation functions of fluxes of
direct and scattered radiation are
shown in Figure 86 a. The re-
ciprocal correlation functions of
scattered radiation and cloud
coverage of the zenith for the
same cases are presented in Figure
86 b. It is to be seen that the
reciprocal correlation functions
reach values of up to 0.5 and
decrease more slowly with dis-
placement in time than do the
correlation functions of the fluxes
of direct and total radiation (see
Figures 36 and 75). In this
instance the correlation between
the fluxes of direct and scattered
radiation somewhat exceeds the
correlation between zenith

coverage and scattered radiation. This latter circumstance is due to the
in-phase fluctuations of direct and scattered radiation determined chiefly by
the wide variability in the brightness of clouds in the vicinity of the Sun.

As we saw in the preceding section, in the case of mean amounts of cumulus

clouds the contribution made by the mutual correlation of fluxes of direct and

/171

scattered radiation in determination of the correlation function for total
radiation is 15-30%. Since the normalized reciprocal correlation function of
the fluxes of direct and scattered radiation reaches values of up to 0.5, it
consequently accounts for up to 15% of the total radiation correlation function.

The similarity of the correlation functions of the fluxes of the direct and
total radiation (see the preceding section) is also confirmed by the course of
the reciprocal correlation functions of direct and total radiation, which are
shown in Figures 87 and 88 respectively for n(ﬁo) < 0.3 and 0.3 < n(ﬂCQ < 0.5.

As may be seen, the coefficient of reciprocal correlation reaches 0.9, decreasing
somewhat with increase in the amount of clouds. At the same time, in the
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majority of cases there is observed a slight displacement in time {(of up to one
minute) of the mutual correlation maximum, a displacement which may be due in /172
part to the nonsynchronous plotting of the ordinates during the primary pro-

cessing of the recording instrument tapes. Since up to the present reciprocal
correlation functions have in the main been derived only for an amount of

clouds n(¥.) ranging from 0.1 to 0.5, more detailed study of their behavior as

a function of the amount of clouds remains a task for future experimental studies.
The correlation between total radiation and cloud coverage of the zenith is

small (Figure 89). This is due chiefly to the slight correlation between cloud
coverage of the zenith and the Sun at %D ~ 40-50° (see Chapter III, Section 4).

This latter circumstance is also confirmed by experimental measurements of the
reciprocal correlation functions of the flux of direct radiation and cloud
coverage of the zenith (see Figure 90).
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Figure 79. Range of Variability of Spectral Densities of
Total Radiation Versus f in Min ! (Ground Measurements).

The reciprocal correlation between the fluxes of scattered and total
radiation (Figure 91) is also small. The correlation between scattered and
total radiation improves with increase in the amount of clouds, this being due
to - increase in the weight of the flux of scattered radiation in the total
radiation. This also follows from the theoretical considerations advanced in /173
this chapter.

In the case of the aircraft studies reciprocal correlation functions were
derived only for the fluxes of total and reflected radiation, which were
measured in flights both above and below clouds and inside stratocumulus clouds. /174
As may be seen from Figure 92, which illustrates the reciprocal correlation
functions obtained in flights respectively above clouds, through the summits
of clouds at a distance of 100 m from the upper boundary, and below clouds over
bare ground, considerable improvement is observed in the correlation with
decrease in the altitude of flight. The correlation function becomes more
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symmetrical in this instance. This is due to the symmetry of distribution of
the brightnesses relative to the zenith under depth conditions (see Section 6
of this chapter, in which an analysis is made of radiation conditions in the
case of stratified clouds).
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Figure 80. Spectral Densities of Total Radiation
for Specific Observations for Cumulus Clouds n = 0.5
Versus f in Min~! (Ground Measurements).

Reciprocal spectral analysis was also carried out for the purpose of more /176
detailed study of the relationships among the radiation fluxes. Calculation
was made of the moduli of complex reciprocal spectral densities

Sea(f) =VA2()) +B2(}),

in which A(f) and B(f) are respectively the real and imaginary portions of the
spectral density. The moduli of the reciprocal spectral densities for ground
measurements are shown in Figures 93-98 for ground measurements and in Figure

99 for aircraft measurements. The low-frequency components predominate in all
the reciprocal spectral densities. 1In addition, the spectral densities
oscillate to a considerable extent in the case of the ground measurements, thus
indicating the existence of a set of maxima which shift from observation to
observation. The reciprocal spectral densities are more greatly smoothed in the
case of the aircraft studies (Figure 99) and generally decrease more rapidly with/177
increase in the frequency, the lower is the altitude of flight, that is, the
greater is the optical thickness of the cloud cover above the aircraft.

The coherence (see formula 1.12), that is, the correlation of the different
frequencies of reciprocal spectral density, also decreases with increase in
frequency. The coherence is substantial in the case of ground measurements only
for direct and total radiation (Figures 100-105). We see that the coherence
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change in the frequency. The locations
rvation to observation. In the case of
the aircraft studies, as is to be seen from Figgre 106, the §oherence }s at t?e
minimum in flights above clouds and increases with @ec?ease in the altitude o
flight. The coherence reaches considerable values 1?51de the cloud layer or N
below it, decreasing much more slowly with increase 1in the frequency than in the

case of the ground measurements.

changes abruptly in all instances with
of the coherence maximi shift from obse
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Figure 81. Autocorrelation Functions Averaged over Observa-
tions Versus x in km: a, Inside Cloud Layer (Sc) (1, Total
Radiation; 2, Albedo; 3, Reflected Radiation); b, Below
Clouds (1, Total Radiationd with Cu; 2, Total Radiation with
Sc; 3, Reflected Radiation with Cu).

—————

The phase shift as expressed in units of time (length) also decreases with
increase in the frequency. As may be seen from Figures 107-112, the phase
shift is in the majority of cases smaller than 30 sec in the ground measurements. /180
It usually is less than 0.5 km in the case of the aircraft measurements (Figure
113).

It may be said in recapitulation that the phase shift and the shift of the
reciprocal correlation function maximum are not essential for the majority of
the problems we have considered.

Section 5. Representation of the Distribution of Brightness over the Sky by
Means of Eigenfunctions

We have considered the statistical characteristics of radiation fields, and
have also presented algorithms determining the interrelation between the
statistical characteristics of brightness fields and radiation fluxes. However,
owing to the absence of information on the structure of the distribution of
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brightness over the sky when clouds are present, it would have been possible to /188
solve the problem in theory only in the first approximation, by use of model
distributions of brightness over the sky not verified by full-scale measurements.
In order to fill this gap and to obtain the next approximation of the theoretical
algorithms, measurement of the distribution of brightness over the sky at wave-
lengths of 707 and 723 nm has been conducted since 1970 at the Institute of
Physics and Astronomy of the Academy of Sciences of the Estonian SSR. Up to the
present we have obtained 18 zenith angle scannings, 16 of which have been fully
processed. For the purpose of determining the parameters of the structure of
brightness fields over the sky use is made of expansion on the basis of the
optimum eigenvalues and eigenfunctions of the brightness correlation matrix

[6, 7]. It is to be noted that a similar approach was adopted in order to
determine the parameters of distribution of clouds over the sky, the results of
this determination being presented in Chapter III, Section 4, in which the
coefficients of correlation of the presence or absence of clouds at various
zenith distances serve as the elements of the correlation matrix.
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Figure 82. Spectral Densities, Averaged over Observations,
of Shortwave Radiation in Flights Inside a Layer of Strato-
cumulus Clouds Versus Linear Frequency f in km !: 1,
Ascending Flow; 2, Descending; 3, Albedo.

Up to the present scanning has been conducted only for cumulus clouds in
the plane perpendicular to the solar vertical. The eigenfunctions and eigen-
values for brightness have consequently been obtained only as a function of the /189
zenith angle of observation: The averaged relationships of brightness to
zenith angle for individual specific observations of a duration of 60 to 200
minutes, normalized on the basis of the zenith brightness, are shown in Figure
114. The averaged brightness decreases slowly in the direction of the horizon
in the case of large amounts of cumulus clouds. With mean amounts of clouds the
brightness is virtgally’independent of the zenith angle of observation, and in
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the case of small amounts of clouds increases with increase in the zenith angle
approximately to 30-40°, and then decreases slowly or remains constant even

with further increase in the zenith angle. This brightness behavior is due to

the combined effect of the brightness of the clouds and the clear sky between

the clouds. It has been established by theoretical calculations and experimental
studies [32, 78-83] that the brightness of a cloudless sky increases considerably
with increase in the zenith angle, while the brightness decreases somewhat in

the case of an unbroken cloud cover. A brightness maximum is observed for /190
cumulus clouds in the vicinity of zenith angles & = 30-40°, this being used in

all probability to reflection of sunshine by the illuminated sides of the clouds.

It must be observed that enough experimental studies have not as yet been

conducted to permit clearcut determination of the relationship between brightness
distribution and amount of clouds. The relative root mean square deviations of
brightness, normalized on the basis of the corresponding values at the zenith,

are presented in Figure 115. It is to be seen that with increase in the zenith /191
angle the root mean square deviation first increases to reach a maximum at ¢ =
= 20-40°, and then generally decreases. The maximum at the mean zenith angles
is-due to the high brightness of the sides of the clouds illuminated by the Sun
and thereby confirms the conclusion drawn in the analysis of the behavior of
mean brightness. The decrease in the root mean square deviation toward the
horizon at ¢ > 50° is due to decrease in the variability of the cloud conditions
owing to the influence of the sides of the clouds (see Chapter III, Section 1).

The normalized coefficients
of correlation of brightness in
directions ¥ = 5, 35, and 65° with
the brightnesses in other directions,
K5,0’ K35,0’ and K65,0 are shown

in Figures 116-118 respectively.

We see that the correlation co-
efficients of the individual
observations, has in the discussion
of cloud coverage of the direction
of sighting (see Chapter III,
Section 9), are similar, while

the correlation radius decreases
with increase in zenith angle 9.
This latter circumstance is due to
0 the increase in distance in space
Figure 83. Spectral Densities, Averaged with increase in zenith angles

Over Observations of Shortwave Radia- ¥ with the difference between
tion Fluxes Under Cloud Cover Versus f them the same.

in km: 1, Descending Flow (Cu); 2,
Ascending (Cu); 3, Descending (Sc).

Like the correlation co-
efficient, the eigenvalues of the
correlation matrix as well do not
vary appreciably from observation to observation. The eigenvalues and the
relative accuracy in utilization of the first with components for brightness are
presented in Table 6. As may be seem, the first eigenfunctions account for
38-68% of the dispersion, the second ones 14-25, and the third eigenfunctions
6-15%. On the average the first eigenvalues account for 55% of the dispersion,
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the first two account for 74%, and the first three 84%, these values being
somewhat smaller than the corresponding ones for the cloud cover structure. This
is quite natural, since the cloud cover eigenvalues were obtained on the hasis

of coverages of the directions of sighting averaged over the azimuth (see
Chapter III, Section 4). The first brightness eigenfunctions for individual
observations are presented in Figure 119. We see that their trace is similar
from case to case. The first eigenfunction generally has a maximum at mean
zenith angle values ¢ = 20-40° and decreases both in the direction of the zenith
and in that of the horizon to approach zero in the vicinity of the horizon.

From the physical viewpoint this course of Xl(ﬂ) means that the greatest

deviations of one specific observation from the mean course of brightness are
observed at zenith angles from 20-40°, owing to the relatively great brightness

of the sides of the clouds and their substantial weight at & = 20 to 40°. /194
Fluctuations from the mean are generally small on the horizon. The second
eigenfunction provides information on distortions in the course of the first
eigenfunctions. Increase or decrease in the brightness obtained in a specific
measurement around the zenith (¢ = 0-30°) is accompanied by simultaneous
decrease or increase in the brightness at greater zenith distances (8 = 40-70°)
(Figure 120). The third eigenfunctions provides information on the finer struc- /196
ture of deviation from the mean trace (Figure 121). We see that increase in
brightness around the zenith is accompanied by increase in brightness in the
vicinity of the horizon and decrease in it at mean zenith distances, and vice

versa. As may be seen from Figures 119-121, the similarity in eigenfunctions

from case to case decreases with increase in their index number. The similarity

of the second and third eigenfunctions for brightness and cloud coverage of the
direction of sighting (see Figures 50 and 51) indicates that the finer structure /197
of deviations of brightness from the mean is determined basically by the

structure of the cloud's presence. Only the first eigenfunctions differ in

quality (see Figure 52). 1In this instance a substantial influence is exerted

by the difference in the brightness of individual clouds, as well as by the
circumstance that the course of brightness as a function of the zenith angle

is not monotonic. The fine structure of brightness distribution within

individual clouds is described by eigenfunctions starting with the fourth. They
vary widely from case to case, however, and for this reason do not lend themselves
well to physical interpretation. In addition, since their weight in the total
dispersion is small, and the number of cases investigated is also small, we will

not enter into a discussion of them at this point.

Section 6. Relationships Between the Statistical Characteristics of Radiation
Fields and the Statistical Characteristics of Optical Cloud Structure Parameters

The variability in radiation fluxes in the case of cumulus clouds, as
indicated by the results of Sections 1-4 of this chapter, broadly determines the
variability in cloud coverage of the sky. However, study of the fine structure
of brightness and radiation fluxes for cumulus clouds, as well as study of the
variability of brightness and fluxes for stratified clouds, are inconceivable
without study of the relationships between the statistical characteristics of
brightness fields and the statistical characteristics of clouds. Together with
the possibility of using these relationships to extract information on cloud
structure, turbulence inside clouds, and so forth [84], studies of this kind are
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important because of the nonlinearity of the relationships between radiation
conditions and the optical parameters of the real atmosphere, and also because
of the nonlinearity of the influence of light on such natural processes as
photosynthesis, evaporation, melting of snow and ice, convection, etc. Thus it
has of late become essential to study the optical properties of the cloud cover

as a complete formation.
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Figure 84. Spatial Spectral /168
Densities, Averaged over Ob-
servations of Shortwave Radia- Figure 85. Spatial Spectral Densities,
tion Fluxes Inside Layer of Averaged over Observations of Shortwave
Stratocumulus Clouds Represented Radiation Fluxes Below Cloud Layer
in Logarithmic Coordinates: 1, Represented in Logarithmic Coordinates:
Rk; 2, Q; 3, Ak' 1, Q for Cu; 2, Rk for Cu; 3, Q for

Sc.

As was pointed out in Chapter I, radiation conditions in a scattering
medium are connected by a nonlinear relationship to the optical parameters of
the medium usually employed in the transfer theory: the coefficient of
scattering and absorption, the scattering indicatrix, and the optical thickness. /198
Description of the radiation conditions of heterogeneous media by means of the
transfer equation with the mean parameters-of a medium consequently entails a
systematic error which often cannot be evaluated by the investigator. Although
the need for extending the transfer theory to media having randomly distributed
parameters was recognized several years ago [85], but only now is solution of
this problem being approached [32, 39, 86-92]. Formulation of the radiation
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transfer problem of clouds is not possible within the framework of the classical
transfer theory. The chief obstacle is the absence of means for determining the
microphysical cloud cover parameters entering into this theory and their
variability for a specific observation, as well as the mathematical difficulties
involved in solving the transfer equation for a medium with statistically
distributed optical parameters. But even the possibility of solving the transfer
equation for heterogeneous media would contribute little toward development of
cloud cover optics, since, because of the considerable number of parameters of
the process of propagation of light, the results in the forms of tables and
graphs cannot be used to solve the problem. The best prospects are thus afforded
by finding macrocharacteristics of the cloud cover such as define the general
outline of the cloud brightness picture.
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Figure 86. Examples of Reciprocal Correlation
Functions for Cumulus Clouds n = 0.3-0.8 (t in
min): a, for Direct and Scattered Radiation; b,
for Scattered Radiation and Cloud Coverage of the
Zenith.

Aside from the physical aspect, an approach such as this is at the present
dictated by the mathematical difficulties, since statistical analysis in the
general form (without numerical analysis in the form of tables and graphs) simply
cannot be accomplished without a convenient and flexible mathematical apparatus.
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Figure 87. Examples of Reciprocal Correlation
Functions of Direct and Total Radiation for
Cumulus Clouds n(ﬂcg = 0.3 (t in min).

Figure 88. Examples of Reciprocal Correlation
Functions of Direct and Total Radiation for
Cumulus Clouds n(ﬂcg > 0.3 (t in min).
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Figure 89. Examples of Reciprocal Correlation Functions of
Total Radiation and Coverage of the Zenith by Cumulus Clouds

(t in min).
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Figure 90. Examples of Reciprocal Correlation Functions of
Direct Radiation and Coverage of the Zenith by Cumulus Clouds

(t in min).
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Figure 91. Examples of Reciprocal Correlation Functions of
Scattered and Total Radiation for Cumulus Clouds (t in min).
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Figure 92. Examples of Reciprocal Correlation Functions of
Ascending and Descending Fluxes of Shortwave Radiation (x in
km): 1, Above Layer of Stratocumulus Clouds; 2, 3, Inside
Cloud Layer (Sc); 4, Below Layer of Stratocumulus Clouds.

To illustrate the foregoing let us make an excursion into the field of
molecular physics. As we know, thermodynamics, while it does not enter into
microscopic examination of processes nevertheless permits the drawing of a
large number of conclusions regarding the general progress of such processes,
ones which are just as reliable as the fundamental laws underlying thermo-

dynamics. ’

TABLE 6. EIGENVALUES OF SHORTWAVE RADIATION INTENSITY.

CloudineSS, l m A,mT0] A2, mP| A3.mTe| R4, mPo As,m%
t

1Ci, Cs, 3Cu 18 456 645 796 866 912
ICi, Cs, 3C 18 605 750 842 892 924
0Ci, Cc, 4Gu—0Ci, Cs, 2Cu 18 63.0 792 857 904 931
0Ci, Cc, 4Cu—0Ci, Cs, 2Cu *18 498 723 814 869 908
5Cu, Cb —6Cu 18 648 792 873 913 942
5Cu, Cb— 6Cu 18 470 682 836 889 92!
5Cu— 8Cu 18 382 632 739 848 912
5Cu — 8Cu 18 500 722 794 851 883
[10] Cu, Cb— JCi, 6Cu 9 677 680 941 967 979
!1__0| Cu, Cb —1ICi, 6Cu’ 18 600 792 870 929 955

In translating the foregoing into the terms of cloud cover optics we
note that cloud brightness parameters do siot reflect many minute details of
the macrooptical parameters of the elementary scattering and absorbing volume. /199
Hence it is advisable to exclude superfluous details in formulation of the _-
problem. From the viewpoint of optical properties the cloud cover as a whole
should be characterized by a small number of generalizing macroparameters. The
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relationships between the cloud cover and radiation fluxes for cumulus clouds
presented in Sections 1-4 of this chapter were derived in the first approxima-
tion precisely in this manner.

155010 150, mt0s101]

0 as 0§ o0 a5 @ 4
Figure 93. Examples of Moduli of Reciprocal
Spectral Densities for Cumulus Clouds, n = _

= 0.3-0.8, Versus Linear Frequency (f in min 1y,
a, for Direct and Scattered Radiation; b, for
Scattered Radiation and Cloud Coverage of the
Zenith.

In what follows we will consider the variability in the transmission and
reflection of an optically dense cloud layer as a function of the variability
of its optical thickness due to the variability of the altitude of the lower
and upper boundaries, moisture content, and microstructure. It is here assumed
that the variability in optical thickness may be described by a normal random
process (see Chapter I, Section 6). This obviously is plausible, since the
optical thickness is formed under the combined influence of several randomly
varying parameters.

Approximate solutions of the transfer equation in the form of simple
analytical formulas were used for studies of this kind. Of the great number of
approximate formulas currently in existence the asymptotic formulas of G. V.
Rozenberg for homogeneous layers of optically thick turbid media have been
confirmed by extensive laboratory studies [80]. The relationship has been
established in this case between the macrooptical parameters figuring in the
theory and the microoptical parameters of clouds [32, 80].

If appreciable absorption takes place in the layer of the atmosphere below

clouds, the transmission coefficient P of a plane-parallel cloud layer is
described by the following formula:
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uN (po, u, ¥)

f ot =

— ~— ,
el -an( T
in which Mg = 005'09, %D is the zenith distance of the Sun, u = cos ¥, ¢ is the

zenith distance of the direction of observation, y = 2¥I8, 1 is a parameter
characterizing the degree of extension of the scattering indicatrix, B = a/o

is the specific absorption by the cloud mass, o and o are the coefficients of
absorption and scattering, which we assume to be constant within the limits of

a particular cloud layer, A is the albedo of the underlying surface, t and t /200
are the mean optical thickness of the layer and its deviation from the mean,

and N(uo, H, ¥} is a function introduced to simplify the notation (see [32]).

ISg o= (1]

0 05 10 f

Figure 94. Examples od Moduli of Reciprocal Spectral
Densities of Direct and Total Radiation for Cumulus
Clouds n(¥y) > 0.3 (f in min 1y,

When B - 0, that is, when absorption.is entirely absent from the cloud
layer, formula (4.29) is simplified and assumes the form

T([" »—+ )= #C‘_ : N .
T et (4-30)

. . 1 _ 1 1+ 2A
in which Cy =3t K for the flux, or ¢, = (3 + uo) [——5———-+ (1 - A)u] for the
intensity, and c, = 1 2 A s constant. In this instance the reflecting power
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of the cloud layer is expressed in the form of a simple relation by its trans-
mission coefficient

Sea(h) =yA))+B(}), ' (4.31)
in which h(uo, u) is a function independent of the optical thickness and
differing but little from unity

18,0 (F)]
10 1
o 05 o g

Figure 95. Examples of Moduli of Reciprocal Spectral
Densities of Direct and Total Radiation for Cumulus
Clouds, n(3;) = 0.4-0.5 (f in min 1y,

If the cloud layer is sufficiently thick (y << 1, T + 1 >> 1), when absorp-
tion is present (8 ¥ 0) from formula (4.29) we obtain for the transmission

coefficient _
T+T

- — Ty
T (uo, 1, t+7) '—-—J—‘_:' N(ﬂo;ﬂ,y,A)e ¢, (4.32)

in which N(uo, W, ¥, A) is a function introduced to simplify the notation (see
[32]).

Formulas (4.29)-(4.31) are strictly speaking applicable to description of
the propagation of light in plane-parallel horizontally homogeneous optically
thick layers Tt + 12 5, and since for clouds 7 = 7 to 10. Formula (4.32) is
applicable when 1t + 1t >> 10. For study of the fluctuation in the brightness of
real clouds by means of formulas (4.29)-(4.32) it is necessary for the scales of
the heterogeneities of the cloud cover to be slightly larger than the mean free
path of a photon in a cloud. As we know, under natural conditions the typical
scale of the heterogeneities of the cloud cover are much greater than the mean / 201

free path of a photon in a cloud. The small-scale heterogeneities encountered in
nature are smoothed out and averaged in such treatment it remains a problem of
the future to take them into account.
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i : 3 i of Reciprocal Figure 97. Examples of Modull of K¢
Figure OO o e Toral Radiation a Spgctral Densities of Direct Radiation and

Densities of Total Radiation and :
ggjgiraé oznthe Zenith by Cumulus Clouds at Coverage of the Zenlth by_CgTulus Clouds
n(0) ZgO 2-0.4 (f in min 1). at n(0) = 0.2-0.4 (f in min ).

Since formulas (4.29)-(4.32) describe similar situations, we will hence-
forth use formulas (4.30) and (4.31) for more detailed analysis, and on the
basis of relations (4.29) and (4.32) present only formulas for the means, dis-
persions, and correlation functions of transmission as a function of the /202
statistical characteristics of the optical thickness.

On the basis of formulas (1.38) and (4.30) we obtain for the transmission
probability density

p(T) =._L__exp[ __'_(f_t-l__;)z]
727(‘20’1’7‘2 202'; C'_:T Cz ’

- . 2 . - 3 [ -
in which 0”1 is the dispersion of the Optical chickness.

(4.33)
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Figure 98. Examples of Moduli of Reciprocal Spectral
Densities of Scattered and Total Radiation for Cumulus
Clouds, n = 0.4-0.8 (f in min 1).

The transmission coefficient probability distribution functions are shown
in Figure 122 plotted against the mean optical thickness and its dispersion.

c2 = 0.1 and Hg = 0.5 were adopted in the calculations. As'is to be seen, the

distribution function is the more asymmetrical the greater is the dispersion of
the optical thickness. . In addition, the distribution function extends in the
direction of the higher transmissions. On the one hand, with increase in t the
maximum in the transmission distribution is shifted toward smaller values of

P and the maximum brightness probability increases. The modal transmission does
not coincide with the transmission for the mean optical thickness but is dis-
placed toward the greater optical thicknesses, the further the greater is the
dispersion of the optical thickness and the smaller is the mean optical thick-
ness of the layer, that is, Tmod < T;. On the other hand, the optical thickness

corresponding to mean transmission T is smaller than the mean optical thickness
t(T) < t. The empirical functions of distribution of zenith brightness and total
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radiation flux probabilities for unbroken clouds are presented in Figure 123.
The curves have been calculated theoretically on the basis of formula (4.33).
it is to be seen from Figures 123, 70, and 73, as well as from [73, 77], that
the empirically derived probability densities of brightness (transmission) are
asymmetrical and always extend in the direction of the high brightnesses. This
circumstance does not contradict the hypothesis advanced regarding the normal
distribution of optical thickness.

15, 1]
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Figure 99. Examples of Moduli of Reciprocal Spectral
Densities of Ascending and Descending Fluxes of Short-
wave Radiation (f in km 1): 1, Above Layer of Strato-
cumulus Clouds; 2, 3, Inside Cloud Layer (Sc); 4, Below
Layer of Stratocumulus Clouds.
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Figure 100. Examples of Coherence Between Direct and
Scattered Radiation a, and Scattered Radiation and Cloud
Coverage of the Zenith b with n = 0.3-0.8 (f in min .
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Figure 101. Examples of Coherence

Between Direct and Total Radiation
for Cumulus Clouds, n(Qg) = 0.3 (f

in min-l).

!o)(ﬂ,

10 f

0.5 A

1 [
Figure 103. Examples of Coherence
Between Total and Radiation and
Coverage of the Zenith by Cumulus
Clouds (f in min"1).
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Figure 102. Examples of Coherence
Between Direct and Total Radiation

/182

for Cumulus Clouds, n(0CQ = 0.4-0.5
(f in min—l).
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Figure 104. Examples of Coherence
Between Direct Radiation and
Coverage of the Zenith by Cumulus
Clouds, with n(0) = 0.2-0.4 (f

in min 1),

/183
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Figure 105. Examples of Coherence Bétween

Figure 106. Examples of Coherence Between Ascending
and Descending Fluxes of Shortwave Radiation (f in
km 1): 1, Above Layer of Stratocumulus Clouds; 2, 3,
Inside Cloud Layer (Sc); 4, Below Layer of Strato-

Total and Scattered Radiation for Cumulus
Clouds, n = 0.4~0.5 (f in min 1).

cumulus Clouds.
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Figure 107. Examples of Phase Sbif? (t () 12 min)
Between Scattered and Direct Radiation a, aﬁ Zonith
Scattered Radiation and Cloud Coverage of tFe L

b, for Cumulus Clouds, n = 0.3-0.8, Versus rre
quency f in min
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Figure 108. Examples of Phase Shift Figure 109. Examples of Phase Shift
Between Direct and Total Radiation Between Direct and Total Radiation for
for Cumulus Clouds, n(0@) = 0.3 (t Cumulus Clouds, n(0@) = 0.4-0.5 (t(f)
(£) in min), £ in min 1). in min, £ in min 1).

The mean transmission coefficient (reflection factor), its dispersion, and
its correlation function as a function of the variability of the optical thick-
ness may be obtained by substituting in formulas (1.39)-(1.41) the transmission /203
coefficient expressed by relations (4.29)-(4.32). However, the expressions
derived in analytical form cannot be integrated. We employ the moment method in
order to obtain definitive results in the form of approximate_analytical -formulas.
For this purpose we expand transmission coefficient T(uo, U, T + 1) into a

Maclaurin series on the basis of the fluctuations in optical thickness and sub-
stitute them in formulas (1.42)-(1.44). As will be demonstrated later, a
sufficiently high accuracy of approximation is ensured even by the first terms
of the expansion.

The mean coefficients of transmission and reflection based on formulas
(4.29)-(4.32) are expressed by

T (10, #:?+T)=T(ﬂo.#,?)[l+~2L;-(2Ez——- l)aé], (4.34)

in which
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ch(—f—+1)y—-Ach—f—y
E= ——— = , (4.35)
sh(%+1)y—A(sh—,-y)
—_ _ (4.36) /204
T (pto, pt, v+7) =T (o, p, ) [ L4-c?0%],
in which
C2
=),
14-com .
0 (0 1, T+0) =2 h (o, 1) — (1 — A)T (o, . 7-47) = (4.58)
=0 (uo. . ) — (1 — AYT (o, 1, 7) 0%
and 2
T (o, tt» t47) =T (peo ;ﬁi)<1+y~02)
Ho o PTE (4.39)
T off) In formulas (4.34)-(4.39)
a'"wzg_ T(po, u, T) is the transmission

coefficient and p(uo, u, ) is

the reflecting power of the layer
plane-parallel to mean optical
\ thickness T, which may be derived
from formulas (4.29)-(4.32) when
T =0. It is to be seen that the
mean transmission is expressed by
the transmission at the mean
0 — optical thickness multiplied by a
' L f corresponding correction factor.
It follows from formulas (4.34)-
-(4.37) and (4.39) that the mean
transmission coincides with the
U transmission at the mean optical
thickness t only in the limiting
case, when the optical thickness
dispersion approaches zero, that
-101 \} is, when there are no fluctuations
in optical thickness. In all of
the cases the mean transmission is
greater than would be obtained from

Figure 110. Examples of Phase Shift formulas (4.29)-(4.32) for the
Between Total Radiation and Coverage mean optical thickness. At the
of Zenith by Cumulus Clouds at n(0) = same time, the reflecting power
= 0.2-0.4 (t(f) in min, f in min 1). of a layer of variable optical

thickness (4.38) is always lower
than the reflecting power of a plane-parallel layer of mean optical thickness T.
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Figure 111. Examples of Phase Shift Figure 112. Examples of Phase
Between Direct Radiation and Coverage Shift Between Total and Scattered
of Zenith by Cumulus Clouds at n(0) = Radiation for Cumulus Clouds, n =
= 0.2-0.4 (t(f) in min, f in min 1), = 0.4-0.8 (t(f) in min, f in min l).

Figure 113. Examples of Phase Shift Between Descending
and Ascending Fluxes of Shortwave Radiation: .1, for
Stratocumulus Clouds; 2, 3, Inside Cloud Layer (Sc); 4,
Below Sc Layer (x(f) in km; f in km 1),
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In observations, especially from a great distance (as from outer space), or
in .measurements of the scattered radiation flux averaging is performed over a
certain surface Q@ of the cloud layer. Let us carry out analysis of the influence
of averaging for formulas (4.30) and (4.36). Substituting the value 1' = 1 +

YT~ ?Q for t in formula {4.30) and replacing dispersion ci in formula (4.36)

with dispersion oi,= of - ogﬂ, we obtain the approximate relation between TQ

and ?Q at the average correction value ¢ ,,
T
T9 (o, g 7247 =T (o, 1, ) [ 145 (07 — 050) 1, (4.40)
in which ' /205
C2
Cg=— —
1—{-(‘3‘(“

and oin is the dispersion of T values averagéd'over region 2. If @ - 0, then
?ﬂ - 1 and 020 - oi , that is, TQ - T; if @ > «, then ¥Q ~ T and ogg - 0, this

resulting in formula (4.36). )
slo)
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0 40 : 90 =
Figure 114. Relative Mean Sky Brightness
‘Versus Zenith Angle of Direction of
Sighting for Cumulus Clouds, n = 0.2-
-0.9. . _—
0 40 90
Figure 115. Relative Root Mean
Square Deviations of Sky Brightness
Versus Zenith Angle of Direction of
+ Sighting for Cumulus Clouds, n =
= 0.2-0.9.

If the averaging over space Q is insufficient, the dispersion T is a

random value and the functional relationship (4.40) between T and T is random in
nature.
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Normalized Coefficients of
Sky Brightness Correlation (Cumulus
Clouds) at ¢ = 5° with Brightness at

% = 0-85°.

Figure 116.

Figure 117. Normalized Coefficients
of Sky Brightness Correlation
(Cumulus Clouds) at ¢ = 35° with
Brightness at ¢ = 0-85°.

The dispersion of dispersion of, has been calculated to evaluate the random

nature of functional relationship (4.40).
thickness 1 has a correlation function of the form rT(t) = e

mate evaluation of the dispersion of dispersion 02

expressed as

0i,=555_;-(5€)zs;a:[ 143ag _—2( 24?a9 )z]

or

2 _ 2
0‘ oTa

On the assumption that optical

—a|t|’ an approxi-

2 has been obtained which is
) 1
T

(4.41)

==

(4.42)

<
SR N, N

l 2 )2[ l—fa.()

~A %) |
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Figure 118. Normalized Coefficients of Sky Brightness
Correlation (Cumulus Clouds) at # = 65° with the
Brightness at ¢ = 0-85°.

Figure 119. First Eigenfunctions of
Sky Brightness (Cumulus Clouds) Versus
Zenith Angle of Direction of Sighting.
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Dispersion o 5 In o units
T'

and the root mean square deviations
(Figures 1 and 2 and Figure 124)
have been calculated from formulas
(4.41) and (4.42), as well as the
root mean square deviation for

correction term Oi' in units of
02 ~ GZQ (curve 3).
T T

As may be seen from Figure
124, functional relationship (4.40)
is the most random in averaging
over a slightly smaller correlation
radius a2 < 1. On increase in the
averaging scale relation (4.40)



becomes slowly less random, but becomes rapidly so when the scale is
reduced.

It is to be noted that expressions similar to (4.40) may also be easily /206
obtained for relations (4.29), (4.31), and (4.32).

The dispersions of the transmission and reflecting power based on formulas
(4.29)-(4.32) are expressed respectively by

=17 (o, D) 1 B2 (888 — 7B145-) o [ o (4.43)
in which E is given by formula (4.35),
o*r=[T (o, £, 7) 1*c?0% (1 +-8¢%0%), (4.44)
in"which ¢ is given by formula (4.37),
0"o=‘L::i(l —A)2o*r, ‘ (4.45)
in which 02T is given by formula (4.44), and /207
=T o, B[ 1+ 25 o) - .. (4.46)

The expressions for the correlation functions in the same approximation
for the same relations, (4.29)-(4.32), are more unwieldy and less easy to survey:

1+57\t»b” —8)otEire() +"217(4E‘ — 4B 1) ot (1)
rr()=-— - .

E2+__ <8E‘ 7Ez—|——2—)'021 (4.47)

“+6€20'21)r1(t)+2020'21:r (t)
rr(t)=—=—-- ——”11'86702—'—— (4.48)

and the correlation functions for the radiation reflected from the layer and
that passing through it coincide:

re(t) =ro(t),

22
A5 ) re(t) 45 & oot
fT(t)=L__lz) *__2‘__ ? ( )

L+-—n——a‘ (4.50)

(4.49)

In the derivation of formulas (4.34)-(4.50) no allowance was made for the
restriction t + T 2 5, or for the circumstance that the expansions into a series
of formulas (4.30)-(4.31) coincide if |ecr| < 1. 1In this instance the first of
the restrictions in our analysis should obviously be regarded as definition of
the concept of an optically dense unbroken cloud cover, while there corresponds
to the latter the circumstance that negative optical thicknesses are not
observed in nature, that is, always 7 + 1 > 0, nor are infinitely large'optical
densities, that is, T < =,
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Figure 120. Second Eigenfunctions of
Sky Brightness (Cumulus Clouds) Versus
Zenith Angles of Direction of Sighting.
Let us analyze the applicability b
of formulas (4.34)-(4.50). 1In view
of the similgrity of initial formulas Figure 121. Third Eigenfunctions of
(4.29)-(4.32), we will confine our- Sky Brightness (Cumulus Clouds)
selves to evaluation of the accuracy Versus Zenith Angle of Direction of
of. the means, dispersions, and Sighting.

correlation functions of the trans-
mission coefficient obtained on the basis of formula (4.30).

To allow for restrictions t + 1 = 5, |ct| < 1, in place of the normal /208
distribution function for optical thickness we use the normal distribution
function bounded at a certain level a for both positive and negative fluctuations.
This function is expressed by

p(r)=—vl exp (— 2”2")+¢(— ;*“')[6(r+?—a)+

27 0« O¢ " Ot

+8(r—14a)], (4.51)

if |t] <7 - aand p(t) = 0, if |1| > T - a, in which ¢ is the probability in-
tegral, 0% is the dispersion of the unbounded normal distribution of optical

thickness, and §(x) is the Dirac delta function. Thus the probability distribu-
tion function selected, (4.51), is normalized, and the symmetrical restriction,

while not fundamental, greatly simplifies subsequent operations.
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Figure 122. Transmission Probability Distribution Functions
Calculated with Formula (4.33): 1, ci =16, T = 15; 2,

o§=64,¥=15; 3,c§=1oo,¥=15; 4, o$=64,¥=3o.
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Figure 123. Probability Distribution Functions for Unbroken
Clouds: a, for Brightness at the Zenith; b, for Total
Radiation Flux. The dots represent empirical data and the
curves data calculated on the basis of formula (4.33).
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Figure 124. Dispersion of Dispersion of Cloud Layer

Optical Thickness 0§2 in Units of o? (curve 1), Root
T

Mean Square Deviation in Units of oi Corresponding to

It (Curve 2), and Variability Coefficient o_p (o2 - 02g)™)
T'
(Curve 3), as Calculated with Formulas (4.41)-(4.42).
Making use of ‘the distribution function of (4.51) and the expansion into
a series of formula (4.30), by means of the moment method we determine the

mean transmission and its dispersion as a function of the values of parameters /210
Cys a, T, and 03. In this instance we take the first ten terms of the expansion.

The results obtained were utilized in calculation of correction factors g, and
g, for formulas (4.36) and (4.44), which, with allowance made for the corrections,

are respectively of the form

T (no. ‘ll.-‘l—'—}—t) =T (uo, y.?) (14 g1c20%) (4.52)

and
or=[T (ro. t, 7) 1202 (1 --8gac%0%). (4.53)
Correction factors g, are presented in Figures 125-127 for the mean trans-

mission coefficient formula. It is to be seen from Figures 125-127 that
correction factor g, may be disregarded if T/cT 2 3, this corresponding to un-

broken clouds under natural conditions. At the same time, g, > 0 for all

ossible values of the parameters. It was determined from our experiments that
'r/'oT > 3 for developed stratified and stratocumulus clouds. This ensures
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applicability of approximate formulas (4.34)-(4.39). Evaluation of the accuracy

of formulas such as (4.36) made in [38] has demonstrated that, with the
restrictions stated above, the divergence yielded by precise calculations

derived by numerical integration of the distribution function with the corre-

sponding weighting function is only a few percent.

A

0'Z — z 4 z

Figure 125. Correction Factor for Mean Transmission
Coefficient Formula (4.52), with T = 20, c, = 0.1;

1, a=10; 2, a=3; 3, a= 6.

o 2 + =

Figure 126. Correction Factor for Mean Transmission
Coefficient Formula (4.52), with T = 20, a = 3; 1,

c2 = 0.3; 2, c2 f 0.2; 3, c, = 0.1.

same time, the reflecting power is smaller than with a2 homogeneous layer of

from 5 to 15% in comparison to a homogeneous layer of optical thickness T.

The mean transmission is always greater than that obtained from formulas
(1.39)~(1.41) for a homogeneous layer at the mean optical thickness. At the

mean optical thickmess. Our measurements reveal that the radiation transmission
of stratified and stratocumulus clouds, because of their heterogeneity, increases-

Similarly, the range of applicability of formulas (4.53)-(4.46) for cal-
culation of dispersion is restricted by the condition that factor g, must
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approach unity. As may be seen from Figures 128-130, which show factor g, as

a function of the varying parameters, the approximate formulas for dispersion
are less precise and thus the range of applicability is narrower in comparison
to the formulas for mean transmission. Correction factor g, may be disregarded /212

if ?/ot > 4. It is this which determines the applicability of formulas (4.47)-

-(4.50) for derivation of the autocorrelation functions as second moments. The
autocorrelation functions of optical thickness and transmission, and also of
the reflecting power, do not differ substantlally from each other. The
correlation radius for optical thickness is in this case slightly larger than
the correlation radius for transmission, as may be seen from Figure 131, which
shows the autocorrglation functions calculated with formula (4.48).
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Figure 127. Correction Factor for Mean Transmission Coefficient
Formula )4.52), with a = 3, c, = 0.1; 1, t = 100; 2, T = 50; 3,

_ - 2
T =20; 4, Tt = lQ.

Solution of the inverse problem, that is, determination of the statistical /213
characteristics of optical thickness on the basis of the statistical -
characteristics of transmission is a more complex process. Utilization of the
moment method entails certain difficulties, since the distribution of transmission
may not be regarded as normal (see Figures 70, 73, and 123). Hence in processing
the results of experiments use is made at the present time of the relations

o T2 952 V(T2 —2072)%— d0:2(072 — 8T%) (4.54)

;;=r(f} =
cT 2 (or2—8T2)

o= iz [7—(T) }(1+c)2 - (4.55)
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obtained by conversion of formulas (4.36) and (4.44). It is assumed in this /214
instance that the autocorrelation functions of optical thickness and transmission
coincide.

9

o - A .
T2 4 [

S

Figure 128. Correction Factor for Transmission Coefficient
Dispersion Formula (4.53), with t = 20, ¢, = 0.1; 1, a = 0;

2
2, a=3; 3, a=6.
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Figure 129. Correction Factor for Transmission Coefficient
Dispersion Formula (4.53), with a = 3, T = 20; 1, c, = 0.3;

2, c2 = 0.2; 3, c2 = 0.1.

By means of the moment method, in keeping with the foregoing, functional
relations may also be derived for the case in which the albedo of the underlying

surface fluctuates along with the optical thickness. If the albedo fluctuations
described by a normal random process do not correlate with the fluctuations in
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optical thickness, the mean transmission, its dispersion, and the correlation
function, use being made of relation (4.30), assume the form

T (1o, p, v+7, B+B) =T (1o, 4, 7, B) [ 1+ (0% + 0% B?) ], (4.56)
o2r==[T (o, g, 7, B) 12[ c2(0?s+ B02) +
+ (c2+16c5B%2) g%po%+-2c¢ T80t g+ 2c8Biats],  (4.57)
rr () =[T (uo, 1, 7, B) {0 &2+ 204 (34044 372B20% +
+91%0%0%+2B%* 11 (t) + 0%[c2Bt+2¢4 (3Bo?+ 3B%R0%p+
+9B2250%+ 41202 ] 1« (1) + 0280% [ 2+ 2c4 (I720%5 495202+ (4.57)
+90%:0%5-+ 2B%2) 15 (1) r< () + 24 085 (4 -+ 27202+ o%) 125 () +
+0% (B\+2B2%2%s+ a45) 1r2%:(1)},

. Cs 1
in which c_ﬁl-kcﬁif' c3=*7" B=1—A — is the absorption coefficient for the

underlying surface. It is to be noted that o% = ci and rB(t) = rA(t). Ex-

perimental data on the variability of the albedo of the underiying surface are
required for application of formulas (4.56)-(4.58), and this may constitute a
task for future research.

The empirically determined autocorrelation and reciprocal correlation
functions and spectral densities of zenith brightness and scattered radiation
flux for stratified clouds (St) are presented in Figures 132-135. The auto-
correlation functions for flux and brightness are generally similar and also
decrease slowly with increase in the displacement in time (Figure 132). This
indicates that low-frequency fluctuations predominate when stratified clouds /215
are present and are only slightly smoothed out by averaging over the sky. This
is confirmed by Figure 133, which presents the spectral densities of zenith
brightness and total radiation for the same observation. The reciprocal
correlation functions are presented in Figure 134. They are not displaced and
are symmetrical, while the correlation maximum is only slightly smaller than
unity. The symmetry and absence of displacement of the reciprocal correlation
function are indications that the cloud cover is opaque to direct rays of the
Sun, that is, depth conditions are present. This indicates that the weighting
function on transition from zenith brightness to total radiation flux for
optically dense stratified clouds is symmetrical relative to the zenith and /216
does not depend on the azimuth (see the results of Section 1-4 of this chapter).
The reciprocal correlation function is accordingly substantial. The reciprocal
spectral density for the observation in question is presented in Figure 135.

We see that it is near the spectral density of zenith brightness.

Whenever the cloud layer is of slight optical thickness or broken clouds Zglz
are observed, asymptotic formulas (4.29)-(4.32), which describe depth conditions,
are not applicable. As a result approximate formulas (4.33)-(4.58) derived
above, which describe the radiation conditions of an optically dense cloud
layer with variable optical parameters, are also not applicable. In keeping
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with the foregoing, however, by using the approximate solutions of the transfer
equation describing the radiation conditions of strata of slight optical
thickness it is possible to derive formulas characterizing the variability of
the radiation parameters of the atmosphere when clouds of different shape are
present.

9%

z
ér

Figure 130. Correction Factor for Transmission
Coefficient Dispersion Formula (4.53), with_
a=3, c2=0.1; 1, t =100; 2, T = 50; 3, T =

= 20; 4, v = 10.

Use may be made for this purpose, for example, of the approximate formula
of V. V. Sobolev [93]

T(M?+T) —_ 2Bc'~(!‘0- T+t) — R
44 (3—x1) (1 — A) (t+7) (4.59)
in which _ /219
=+
Bc(ﬂo,-‘t-—ﬁ—t):l—}‘?s- .uo—*—(l—-%'yo)e Bo (4.60)
x,=% f x(p)cosypsinypdy, (4.61)

L]

and x(y) is the scattering indicatrix and y is the angle between the directions
of the incident and the scattered radiation.
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Figure 131. Correlation Functions of Optical
Thickness (Curve 1) and Transmission Coefficient
of Cloud Layer Calculated with Formula (4.48):
2, c, = 0.1, t = 20, T/oT = 2; 3, c, = 0.1,

T = 20; ?/oT = 2/3.

On the basis of formulas (4.59)-(4.61) and the procedure taken from [32],
which was described earlier, an expression was derived in {[39] for the mean
transmission coefficient relative to the flux, which is of the form

T (o, 7+ ) = [T (0, 7) + T 0, 7) ] (14 c20) +

-— c l‘
+T2(ﬂ01 T)( ;‘;"}“‘2‘117) 0’12’ (4 . 62)
in which
c= (3-x‘)(l—A)
4+ (3 —xy) (1 —A)7 (4.63)
L+é}uo

Ty (o, 1) =—— (4.64)

24+5-(3—x) (1—A)7
T2 (uo,7v) =T, (— 1o, T) =m0,
If the mean optical thickness T ® 5, then Tz(?) - 0 and formula (4.62)

assumes a form similar to that of formula (4.36). The slight difference between
them is due to the difference in the constants and parameters figuring in
approximate formulas (4.30) and (4.59).

The transmission coefficient dispersion, when formula (4.59) is used,
is expressed by
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0%r=[T1(uo. 7) + T2 (0, 7) 2c20% (1+8c22:) +
- —_ c3 5 ¢2 c
+2T1 0 D) Ta (D) | - ok (85 s

2 _ltoz+2[to
+ 750, D) [ ( 2e15) ot
c3 c

o , 3 ]
+(wm”3M'GW'ﬂw)ﬁ'

)0%4-
(4.65)

Like formula (4.62), this expression for dispersion when T = 5 is sim- /220
plified and assumes a form similar to that of formula (4.44).

~lt)

Figure 132. Examples of Measured Correlation Functions
of Transmission Coefficient for Stratified Clouds: 1,
for Zenith Brightness; 2, for Total Radiation Flux (t
in min).

The formula for the correlation function of transmission in the same
approximation is even more complex in form than dispersion expression (4.65).
In view of the fact that the expression derived for the correlation function is
difficult to survey and it is not advisable to apply it in calculations, we do
not present it here.

When T = 5, the approximate formula of the transmission correlation

function for relation (4.59), like the corresponding formulas for the mean and
dispersion, is simplified and assumes a form similar to that of formula (4.48).
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As with formula (4.59), expressions (4.62)-(4.65) obtained above for descrip-
tion of radiation field structure are applicable with any optical thicknesses
0< T+ 1< o, However, formula (4.59) is strictly speaking applicable only to
plane-parallel strata of turbid media. Thus whenever the scales of horizontal
heterogeneities is smaller than the vertical extent of the cloud cover formulas
(4.62)-(4.65) presented in the foregoing may not be applied. Formulas (4.62)-
-(4.65) consequently may be used to study all forms of clouds except for cumulus
and cumulonimbus ones, in which the vertical extent of individual clouds is
of the same order of magnitude as the bases of the clouds.
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Figure 133. Examples of Spectral Densities
of Total Radiation 1 and Zenith Brightness 2
for Stratified Clouds (w in min l).

Section 7. Influence of Macroroughness of Upper Boundary of Layered Clouds on
Brightness Coefficient and Albedo i -

Under natural conditions all natural light scattering surfaces or the
interfaces of light scattering media, including the upper boundary of clouds,
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are macrorough to a greater or lesser extent. We know that surface topography
may exert a substantial influence on the reflection properties of the macro-
surface. Such problems have been examined in general form for an arbitrary
topography by A. S. Monin [94], and the characteristics of the urban radiatiom
climate by means of geometric models by V. G. Kastrov [95] and W. Kaempfert
[96, 97].

Figure 134. Examples of Reciprocal Correlation Functions
of Zenith Brightness and Total Radiation Flux for Stratified
Clouds (t in min).

In reality natural surfaces such as the upper boundaries of clouds, mountain /221

regions, forests, snowfields, the surface of a heavy sea, and so forth are
irregular surfaces which it is advisable to characterize by random functions.

To determine the average reflection properties of such surfaces it is sufficient
to know the distribution function of the slopes relative to the angles,

the optical properties of the elementary plane surfaces, and the direction of
the incident radiation.

We adopted an approach such as this in calculations of the optical parameters
of the surface of a heavy sea [98]. The same approximation is used in bio-
actinometry in analysis of reflection and transmission by the leaves of plants
the orientation of which in space is uniform or conforms to a specific pattern
[99].

Simulation by means of plane elementary surfaces involves a number of
errors, which increase with increase in the steepness of the slopes of the surface
and the zenith distance of the direction of incident and reflected radiation
[98]. The major portion of the error is due to shading of some sections of the
surface by others.

Design formulas were derived in [61] to allow for shading on the surface
of the sea, ones which in principle may be applied to any light scattering
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macrorough surfaces. But since many natural surfaces (mountain regions, the
upper boundary of clouds, and so forth) are rougher than the surface of the sea,
it is necessary to allow for shading over a wider range of solar altitudes than
was done in [61]. Allowance for shading widens considerably the range of
applicability of the model employed in calculations of the optical properties
of the surface of the sea and renders such an approach suitable also for macro-
rough surfaces having steeper slopes.

In accordance with [98], we present below formulas the purpose of which it
is to allow for reflection from an uneven surface when the reflection from the
elements of the surface is diffuse. If the reflection from the elements of the
surface is orthotropic, the design formulas are greatly simplified and permit
the drawing of a number of conclusions.

Let us consider a light beam of intensity I(#, ¢) in solid angle dQ, which
strikes the surface at an angle &, ¢. Diffusely scattered light of intensity
11(01, wl) is propagated’ in direction 01, 2%

It may be demonstrated that the angles between the normal of the surface
element, ﬂn’ v and the directions of the incident and reflectéd beam are

d respectively b
cxpresse °P ey Y COS-x =#20s ¥y COS B4-sin ¥ sin ¥ cos (@ — @n),

COS y2==C0S ¥n COS P41+ 5in Pn sin B4 cOS (@1 — @n). (4.66)
The brightness of one specific slope is expressed by
l("h 'Pi) =cos llQ(xh Zz)[(ﬂ' q’)dgv (4.67)

in which p(xl, xz) is the brightness coefficient.

The portion of the unit section of surface formed by projections of all
the elements of the real surface with a specific orientation of the normal
within solid angle dQn equals

p(%n, Pn)d2n, (4.68)

in which p(ﬂn, wn) is the distribution function.

The real area of the aggregate of correspondingly oriented sections per
unit surface-area will be

p (01:, ¢n) sec ¥ dQn,

(4.69)
while the area of their projections onto the unit plane perpendicular to
the direction of the scattered beam is defined as
P (¥, n) seC 1 5€C By COS x2 dDn. (4.70)

From expression (4.67) and (4.70) we derive the brightness formula for a beam
scattered by statistically distributed sections over range dQn in direction 61,

?1
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dly(B1, g1) =1(8, ) d0 (21, 72) P (9n, Pn) X
X sec ¢ sec 1?y, €OS x4 COS y2 A,

The total intensity in- a particular direction is obtained after integration
relative to 19n, ¢, within the range corresponding to all possible directions of

incident radiation (x;, X, < 90°), in the form

11(01. @1). =sec il (&, ®) dQQJ‘Q(xi, 22) P (P, Pn) X

/223

(4.72)
X sec ¥n COS x1COS 12 d2n, K
and the reflected flux in the form
F (3, 9) ——-(mf)h(zh. @1)cos $1 dQy. (4.73)

Formulas (4.72) and (4.73) are applicable whenever the brightness
coefficient varies with altitude {(mountain regions). Then in place of two-
-dimensional distribution functions p(t?n, wn) we use three-dimensional functions

p(z, ¢ _, <pn) and integrate additionally with respect to z.

n

When the reflection by the surface elements is orthotropic,

b
e(ru ) =77 (4.74)
in which b < 1 and the distribution function does not depend on azimuth ¢

after simple conversions formula (4.72) assumes the form

I1( 31, @1) ,:2. secgh/ (9, @) dQ[ cos P cos 0.[ P{Bn, pn) X
u’\

X ¢cos ¥y d.f),.-}——;—sinﬂsin B X (4.75)

sin2 ¥,
X cos (@ — @1) f p (%, fpn)?gé—g:‘—dgn] .
a

n

Thus we obtain the brightness coefficient for surface macroroughness:

b
QWJH—;{!pwm%kmmdﬁﬁ

(4.76)
sin? ¥,

cos ¥n ddn ] :

. |
+—§'tg fOitg 0COS(¢ - lpl) f P (Pn, ¢n)
S Qu
Provided that

V4N ;{zggoﬂ 4.77
B + B max <0, (4-77)
191+0n,max <90°
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the albedo equals

F(l?’):b p(ﬂn. n)COS’l}nd.Qn,
W=0fp@ng (4.78)

this being approximately equal to the albedo for a smooth surface, b, if the
roughness is not too great. It follows that the albedo of a rough surface is
always smaller than the albedo of a smooth surface, since

p{p(ﬂff- ®n)cos B dQ, <1, (4.79)

If the restrictions of (4.77) are adhered to:

1. The brightness of a rough surface in the plane Iw - wll = 7/2 is con-

stant and is always smaller than the brightness of a smooth Lambert surface.

2. 1In the fourth sphere, |¢ - wli < m/2, the brightness is greater than in
the fourth sphere |¢o - w1| > 1/2, and in the latter case may under the same

conditions exceed the brightness of a smooth Lambert surface. The intensity of
backscattered radiation is greater than the intensity of radiation scattered
forward, the more so the larger are ¢ and ¥, and the smaller is le - ¢].

In comparison with a smooth surface the macroroughness of a surface con-
sequently determines the redistribution of brightness by angles.

For real reflection indicatrices surface roughness reduces extension in
the direction of the mirror reflection, the more so the greater is the roughness
and the greater is the zenith distance of the Sun. The albedo decreases with
increase both in surface roughness and in the zenith angle of the Sun.

The albedo decreases greatly owing to shading in the region in which
B+ 3n >> 90°. This latter circumstance substantially reduces the mean

2

albedo of clouds and the albedo of mountain regions, as well as that of rough
snow fields in the high latitudes, in which the altitude of the Sun is low.

The unevennesses of the upper boundary of the cloud cover consequently /225
affect the albedo of the surface as with the variability of optical thickness
(see Section 6 of this chapter); they reduce the reflecting power and increase
the radiation transmission of stratified clouds. More detailed experimental
and theoretical analysis of the relationships of these two effects remains a
task for future research.
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CHAPTER V., STOCHASTIC STRUCTURE OF LONGWAVE RADIATION /226
FIELDS OF THE CLOUD ATMOSPHERE

Section 1. Averaged Thermal Radiation Flux Values of the Atmosphere for Cumulus
Clouds

The flux of longwave radiation of the atmosphere averaged over a certain
territory, F ¥ (x, ¥, 2z), is in the general case calculated with the following
formula taken from [76]:

S F}(x,y.2)dS
F{-(S,Z)SS fr=
S

¢ 5.1
J f/zl}(x,y,2,0,¢)sin0cos0d0d<pd8- ( )
_ 800

= fas
s -

o".y

In this formula S is the area of the territory in question; dS = dxdy;
X, y are horizontal coordinates; z is the vertical coordinate; and I} (x, y, z,
¥, ¢) is the intensity of radiation at point (x, y, z) at azimuth ¢ and zenith
angle &,

On the one hand, in the case of broken clouds the value of F!(x, y, z) in
formula (5.1) varies greatly with change in x, y [76, 100]. On the other hand,
we note that within the limits of a territory over which clouds of one form are
present (i.e., there is a specific air mass above the region in question and
there are no frontal zones) the temperature, pressure, and moisture content of
the air undergo relatively little variation in the horizontal direction. Hence
the horizontal variability of the flux of longwave radiation of the atmosphere, /227
Fl (x, y, z), is determined chiefly by the amount and distribution of clouds
over the sky.

For a statistically isotropic plane-parallel atmosphere in which the values
of the meteorological parameters do not vary in the horizontal direction and the
lower boundary of all clouds remains at the same altitude, the mean value of
the longwave radiation of the atmosphere is calculated with the formula taken
from [101]:

2
Fl= ¢ (@] (9)sinPcos ddo+
o

n/2 (5'2)
~ [t (8) )i (#)sin dcos B db.

[
In this formula c(d) is the probability, averaged over the territory in question,
of a free line of sight, i.e., the probability that the radiation at zenith
angle ¥ will arrive from clear parts of the sky; 1 - c(8) is the probability
that the radiation at angle ¢ will come from parts of the sky covered by clouds;
and Ici(ﬂ) and In¢(0) are the values of the intensity of thermal radiation

arriving respectively from clear and cloud covered parts of the sky.
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Calculation of F{ from formula (5.2) is extremely laborious and requires
information on the angular distribution of c(d), Ic¢(§), and In¢(ﬂ). Thus it

is of value to derive simplified approximate formulas for calculation of the

mean values of the longwave radiation of the atmosphere. It is demonstrated in
[102] that, if a cumulus cloud field is simulated by a set of randomly arranged
plates situated at the same level, the mean flux of descending thermal radiation

is defined by the following formula:
Fy=[1—n(0)]Fc}{+n(0)Fy}. (5.3)

Formula (5.3) may he derived directly from formula (5.2), in which the
probability of a free line of sight c(¥) does not depend on the zenith angle
and equation c(¥) = 1- n(0) is satisfied, on the assumption that the clouds
represent absolute black plates.

The principal errors of formula (5.3) have been analyzed in [102]. It has
been demonstrated that the error arising in determination of the mean value of
the longwave radiation of the atmosphere, F}, for real, bounded territories is
insignificant if the area of the region in question is greater than 100 x 100

kmz. The assumptions we have made regarding constant temperature, moisture
content, and pressure in the horizontal directions are valid only in approxima-
tion in the real atmosphere. If the range of variability of the meteoro-
logical parameters in the horizontal direction is narrow in the region of
territory S, calculation of Fci and Fni on the basis of the mean vertical

temperature, pressure, and moisture content distributions for the particular
region introduces virtually no additional errors into the value of Fl, but in
the case of meteorological parameters in the atmosphere with large horizontal
gradients, it is advisable to use the following approximate formula taken from

[102]:

1 —

In this formula S is divided into sections Si in such a way that the range

of horizontal variability of the meteorological parameters of the atmosphere
is sufficiently narrow within each section; Fii(Si) is the longwave radiation

flux calculated in accordance with formula (5.3) on the basis of the mean
meteorological parameters for section Si, It has been demonstrated in [102]

that the errors resulting from use of the temperature, moisture content, and
pressure values averaged over sections Si are more or less compensated when

averaging is performed over the entire territory (formula (5.4)). One of the
reasons for this is represented by the strong radiation (and absorption) of
the lower dense layers of the atmosphere, owing to which the role of the radia-
tion from parts of the atmosphere distant from the point of observation is
slight in creation of the flux of thermal radiation at the point in question.
In the general case, in the event of considerable random variability of the
meteorological parameters, it is necessary for calculations of the mean values
of the thermal radiation flux, as with the calculations of the mean shortwave
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radiation values (see Chapter IV, Section 6), to know the characteristics of /229
variability of these parameters at least within the framework of correlation-
-dispersion analysis. It is found, however, that in the majority of cases the
main source of errors resulting from formula (5.3) will be represented by the
fact that we do not allow for the radiation of the sides of clouds. The contri-
bution of this additional radiation depends on the vertical thickness and
temperature of the clouds, and to a great extent also on the nature of distribu-
tion of the clouds over the sky. If the clouds were to be concentrated in one
large mass, the role of the radiation of the sides of the mass would be insigni-
ficant, but with broken clouds of great vertical thickness (Cu) the_radiation
contribution made by the sides of the clouds to the radiation flux F! may be
appreciable. To allow for the radiation of the sides of the clouds [102]
proposes introduction into formula (5.3) of a correction factor by the amount

of which the values of n(0) in this formula are to be increased. According to
the tentative estimates of [102], in the case of one cloud the value of this
correction factor equals h/2, while for a cloud field with mean cloud frequency
k it will be 1/2 «h (in which h is the mean vertical thickness of the clouds

and k is the cloud frequency, i.e., the mean number of clouds per unit length).

It may additionally be assumed that formula (5.3) can also be refined by
using the corresponding averaged relative cloudiness values in it in place of
absolute cloudiness values (n(0)). This method is recommended, for example,
in [103], but without any quantitative estimates.

In [101] the averaged values of the back radiation of the atmosphere cal-
culated with formula (5.3) for the free cloud models indicated above are compared
with the corresponding results obtained with more precise formula (5.2). (Back
radiation is understood to mean the thermal radiation of the atmosphere at the
level of the Earth's surface.) The statistical characteristics of clouds required
in radiation calculations (c(®), n(0), h, k, n) have been determined for a
real cloud system on the basis of the results of an experiment conducted by V. /230
G. Plank [104]. 1In this study cumulus cloud systems were photographed from
aircraft and studied for a period of 19 days at intervals of 1-2 hours (in the
vicinity of Tampa, Florida, 28° north latitude). The most typical cases were
selected and subjeccted to the most thorough analysis possible. As a result
analytical formulas were derived in [104] for determination of the various
statistical characteristics of cumulus clouds. The parameters appearing in these
formulas were also determined experimentally as a function of the intensity of
the ascending air flows and as a function of time. A description is given of
the diurnal variation in the statistical characteristics of clouds as a function
of the amount of clouds. It is to be noted that the results of the studies
cited in [104] are in good qualitative agreement with the results of our
studies presented in Chapter III. To ascertain the patterns of variation in
the averaged values of atmospheric back radiation as a function of the amount
of clouds it is preferable to use the experimental data of [104] for two reasons:
firstly, more clearcut detection of the typical features of back radiation is
fostered by the relatively great vertical thickness of the tropical cumulus
clouds within masses, and secondly, the statistical characteristics of the
thickness of cumulus clouds have not as yet been studied in sufficient detail
in our experiments.
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Figure 135. Reciprocal Spectral Density of

Zenith Brightness and Total Radiation Flux for
Stratified Clouds (w in min 1).

The so-called '"typical cloud cover' alternative, which characterizes the
picture of cumulus cloud field development most often encountered from 0800
to 1700 hours (Figure 136) was selected from the materials in [104]. 1In
addition, use was made of 3 observations of particularly thick cumulus clouds.
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The data resulting from V. G.

_ Plank's experiment [104] unfortunately
1B do not contain the information on

) temperature, pressure, and moisture con-
tent of the atmosphere necessary for
calculations of back radiation. It
was necessary for this reason to perform
calculations based on a '""model" strati-
fication of the atmosphere which met
the requirements of labile stratifica-
tion and corresponded to the cumulus
cloud season.and to the climatic condi-
tions of Florida {101].

The design model proposed and
analyzed in [64, 101, 105] was used to
calculate the values of c(?) and n (see

Figure 136. Example of Typical Chapter III, Section 1).

Diurnal Variation in Cumulus

Clouds (Based on [104]). As was noted earlier, the diurnal

variation in the back radiation of the
atmosphere at the level of the Earth's
surface is determined from formulas (5.2) and (5.3), as well as from the
following formulas analogous to (5.3):

Mg = L1 --n(45°) Fe) +n(45°) Fal, (5-5)
Fl=(1—n)F.}+nF,}. (5.6)
In this instance 1 -
n(45°) =n(0) —i—? xh. .
(5.7)

The values of ﬁc¢ and ?ni required for these calculations were calculated

by the universally known method by use of the integral transmission function
[106, 108].

The results of these calculations are presented in Table 7. The values of
n(0), n, n(45°), h, «, ﬁci, and Fn¢ are also given in the Table. The data in

Table 7 confirm the well-known fact {76, 103] that the dense absorbing layers

of the atmosphere near the ground greatly attenuate the influence of clouds on
back radiation. Thus the diurnal variation in the back radiation flux is much
less pronounced than the diurnal variation in the cloud cover. The cloud cover
is in the cases in question nevertheless an important factor causing variability
in radiation: the amplitude of the diurnal variation in FI is appreciably
greater than the amplitude of the diurnal variation in Fcl and fni. The natural

cause is in this instance represented by the nature of variation in the amount
of clouds during the day: the maximum amount of clouds virtually coincides with
the maximum air temperature.
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The shielding effect of the air layer below the clouds is unquestionably
one of the factors guaranteeing close agreement of the results of back radiation
calculation based on different methods of allowing for the influence of the /233
cloud cover. When the humidity values are large enough all 3 simplified
methods (those based on n(0), n(45°) and n) apparently permit calculation of
the average back radiation flux values with errors of less than 3%. The values
of F{ obtained on the basis of n(0) are consistently understated, the results
obtained by use of n are consistently exaggerated, and the results based on
n(45%) in all the cases investigated by us yielded the best agreement with the
refined back radiation values (those obtained with formula (5.2)). In the
last-named case the absolute back radiation error does not exceed 0.1 mw- cm -2,
this representing only about 0.3% of the values of Fi.

TABLE 7. COMPARISON OF VARIOUS METHODS OF CALCULATING
AVERAGED VALUES OF ATMOSPHERIC BACK RADIATION FLUXES

- ‘FT_(( mwt - cm "2) )
— Fel Fal
. |Time}n(0) | n(45) n Rirw) |ix(ean) | B2sed 0n g (g OD‘ Based on‘ Based | (mw-cm™2) (mw-cm™2
9 ' : formula n(0) n(459) - ) )
A (5'2) I l on‘ 1 R B
Typical cloud cover
1 08—09 0.062 0.075 0.147 0.146 0.181 36.5 36.5 36.6 37.1 36.1 43.1
240—10 0.180 0218 0.337 0.276 0.277 38.4 380 38.3 39.1 36.8 436
310—11 0262 0318 0.454 0.513 0.217 39.1 388 39.1 40.0 370 437
411—12 0.309 0.375 0.516 0.466 0.28] 39.9 39.3 40.0 407 373 439
512—13 0349 0.423 0.566 0.603 0.246 40.0 39.4 39.9 409 37.1 438
6 13—14 0477 0579 0.710 0.854 0.238 414 40.6 413 42.1 376 44.0
7 14—15 0309 0375 0.517 0.935 0.141 39.5 39.0 39.4 40.4 369 437
8 15—16 0.185 0224 0.344 0.856 0.092 38.0 376 379 387 36.3 434
9 16—17 0072 0087 0.161 0.522 0.059 36.0 35.9 36.0 36.6 35.4 429
Very thick clouds
10 9—10 0421 0.511 0.650 0.326 0.549 40.4 39.9 405 415 37.1 438
11 {2—13 0642 0778 0.851 0.892 0.305 42.) 417 425 429 38.0 438
12 15—16 0.290  0.35] 0.492 0.857 0.143 39.0 38.4 388 398 36.4 434

Analysis of the possibilities of obtaining initial information on the
warious cloud cover parameters shows that it is the easiest to determine the
amount. of absolute cloudiness (by means of satellite photographs, for example).
Determlnatlon of the initial data for calculation of n and n(45°) requires
the organlzatlon of a special experiment in each specific case [101, 105]. For
this reason™ it is of interest to arrive at empirical formulas permitting
calculation oﬁ\n and n(45°) solely on the basis of absolute cloudiness data.

It is demonstrated in [101] that on the basis of the materials in question
(numbers 1-12) the relationship between n(0) and n is described well by the
empirical formula \\\ 2

=n(0)+0.8[1—n(0)1[n(0)]°8, (5.8)
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and the relationship between n(0) and n(45°) by the formula

Comparison of formula (5.8) with approximation formula (3.8) obtained on
the basis of our measurements shows that the contribution made by the lateral
surfaces of clouds under tropical climatic conditions is twice as great as in
the temperature latitudes. This apparently is largely due to the relatively
great thickness of the cumulus clouds of the tropics.

Curves plotted on the basis of formulas (5.8) and (5.9) are presented in
Figure 137, in which circles and dots designate respectively the values of n /234
and n(45°) taken from Table 7. We see that there is very close agreement between
the results of the experimental materials and formulas (5.8) and (5.9). It
should be observed, however, that formulas (5.8) and (5.9) should be regarded
as merely approximate, since they were derived on the basis of experimental
mater*als for only one geographic point (Tampa, Florida).

n,n (45%

£0 1

0 0.5 48 #iv)
Figure 137. Values of n and n(45°) Versus Corresponding
Absolute Cloudiness Values. Circles: relative cloudiness
calculated on the basis of V. G. Plank's data (cases numbers
1-12); dots: mn(45°) calculated on the basis of V. G. Plank's
data; curve: calculation with formula (5.8); straight line:
calculation with formula (5.9).

The data of [101, 104, 105] permit both calculation of the averaged radia-
tion flux values and determination of the mean angular distribution of the
intensity of thermal radiation as a function of the amount and form of clouds
and the meteorolog1ca1 parameters. The mean intensity, I¥(¥) is calculated
from the formula 2 —T}(®), 3 —I1.§ (.
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1} (8) =c(N 4 (B) +[1 —c(3) Vnl (9), (5.10) /235
in which Ic$(0) and Inlf8) are the intensities with clear and overcast skies

respectively. As an example Figure 138 presents curves of the angular distribu-
tion of Ii (89), Icl(ﬂ) and Inl(ﬂ) for cases number 11 and 12 obtained in [104]

by averaging over individual observations. As was to be expected, the cloud
cover reduces the angular dependence of radiation intensity. For example, in
the case of an unbroken cloud cover the values of In¢(6) are virtually indepen-

dent of ¢ over the range ¢ = 0-70°.

Tis) a ot b

14

12

0 - - — - ;
n 40 80 . 0 40 . 80 WV

Figure 138. Angular Dependence of Descending Intensity of
Thermal Radiation (in mw-cm~2-ster-!) for Cases a, no. 11
(in n(0) = 0.642) and b, 12 (n(0) = 0.290) Calculated

with Formula (5.10): 1, Ini(ﬂ); 2, H(®; 3, Ici(ﬂ).

Proper selection of cloud cover characteristics and obtaining the initial
information for their determination are thus of substantial importance in
solving problems relating to the energetics of the atmosphere. For example,
to determine the duration of sunshine it is necessary to have data on the diurnal
variation in c(0@) (QD in this instance being the zenith angle of the Sun), and

to determine the mean values of thermal radiation intensity data are required

on the variation in c(#) with variation in the zenith angle. Data on absolute /236
cloudiness, n(0), are of fundamental importance in determination of the mean

values of the radiation fluxes of the atmosphere. It must be emphasized that

it is necessary to conduct additional experimental studies under different

climatic conditions for the purpose of definitive establishment of the possibi-
lities of determining the values of n and n(45°) on the basis of data on

absolute cloudiness alone.
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Since the calculations presented in the foregoing on the mean back
radiation values were performed on the basis of approximate models of the
vertical distributions of the meteorological parameters, the results obtained
should be regarded as being merely approximate. To obtain information on
radiation fluxes in the case of cumulus clouds it is essential to conduct
studies for the purpose of accumulating dependable data on the variability of
temperature and humidity in time and space.

Section 2. Variability of Intensity and Fluxes of Longwave Radiation

When cumulus clouds are present the brightness of thermal radiation between
clouds is virtually constant; it fluctuates slightly within individual clouds
and changes abruptly on transition from cloud to clear sky. Hence, as with
the statistical characteristics of shortwave radiation (see Chapter IV), the
statistical characteristics of the brightness and flux of atmospheric back
radiation are in the first approximation determined by the distribution of
clouds over the sky and the mean dependence of the brightness of clouds and the
sky between them on the zenith angle in the region of thermal radiation. In-
formation on the distribution of the intensity of atmospheric thermal radiation
as a function of the zenith angle was presented in the preceding section. By
making additional use of information on the statistical characteristics of
cumulus clouds, which were studied in Chapter III, let us ascertain the basic
patterns of variability in thermal radiation.

Up to zenith distances of the Sun ¢ < 50°, at which the influence of the
lateral portions of clouds is slight, the variability of the intensity of long-
wave radiation up to frequencies the periods of which are comparable to the /237
dimensions of the clouds approaches the variability of cloud coverage of the
zenith (Sun). A correlation-spectral analysis of cloud coverage of the sky in
the direction of the zenith and Sun was presented in Chapter III, Section 2,
and for this reason will not be dealt with here.

The statistical characteristics of the back radiation flux, as with the
relationships between the parameters of clouds (Chapter III, Section 5) and
shortwave radiation (Chapter IV, Section 3), are connected by a linear relation-
ship to the statistical characteristics of brightness at the zenith. We assume

~the brightness field to be isotropic in space. We additionally assume that

the indicatrix both for clouds and for gaps does not vary with fluctuations in
brightness. The indicatrices for clouds and clear sky may differ from each
other in this instance. Owing to the greater optical thickness of clouds in
the region of thermal radiation, the assumption regarding constant indicatrices
agrees much more closely with the actual conditions than in the visible region
of the spectrum.

The weighting function for transition from zenith brightness to back
radiation flux is similar to the weighting function for transition from zenith
brightness to scattered radiation (4.1) and is of the form

n(#) ==—[n(#)In} (#) +c(o) /] (#) Jeos ¥ sin I, (5.11)
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in which F¥ is the mean flux of atmospheric back radiation, and Ini(ﬂ) and Ici

(®#) are the mean cloud brightness and clear sky brightness in the longwave
region of the spectrum.

The climatic conditions of Estonia were taken into account in the calcula-
tions of the thermal radiation intensity for '"model" stratification. The
temperature at the Earth's surface is assumed to equal 20°C, and its vertical
distribution is determined by the labile stratification of the atmosphere in
the case of cumulus clouds. Thus the temperature gradient from the Earth's
surface to the condensation level equals -10°/km and -6°/km above this level.
It was here assumed that the lower boundary of the cloud cover is situated
at the level of 1 km. The relative humidity value at the level of the Earth's
surface calculated on the basis of these data in accordance with [109] is
66%. It is assumed that the relative humidity increases slightly starting at
the Earth's surface, becomes constant in the cloud layer, and decreases at a
relatively rapid rate above the clouds. The atmospheric pressure was calculated
from the barometric formula P, = 1,000 mb.

The angular distribution of the mean brightness, normalized with the bright-

ness at the zenith with mean cloud coverages of the zenith of 0.1, 0.3, 0.5,
and 0.8, is shown in Figure 139. We see that the brightness always increases

/238

toward the horizon, the more rapidly the smaller is the mean amount of cloudiness

at the zenith.

1408
1o} The increase in brightness

to the increase in the contribu-
14 - tion by the natural radiation of
the atmosphere between the clouds

to disregard the dependence of
brightness on the zenith angle

12 4

& W N

10 the statistical characteristics
of zenith brightness to the

back radiation characteristics,
also in. view of the smoothing of

¥

toward the horizon is due chiefly

for effecting the transition from

and the observer. It is advisable

0 40 o 80 the fluctuation in cloud brightness

on passage of tadiation through
the layer of the atmosphere below
the clouds. The spectral

Figure 139. Angular Dependence of Mean
Relative Descending Intensity of Thermal

Radlatlo? Cal?ulated W1Eh'Formu1a (5.19): characteristic of the filter for

1, n(0) = 0.1; 2, n(0) = 0.3; 3, n(0) = L.

=70.5; 4, n(0) = 0.8. §uch a transition was presented
> in Chapter IV, Section 1, in the

form of formula (4.2). The
results of correlation-spectral analysis of the flux of longwave radiation of
the atmosphere must fully coincide with the corresponding characteristics for
scattered radiation obtained on the assumption that the mean brightness of
shortwave radiation does not depend on the zenith angle of observation (see
Chapter IV, Sections 1 and 3).
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As we saw in Chapter IV, Section 5, in which the results of experimental
studies of sky brightness in the shortwave region of the spectrum were presented,
in the majority of cases the brightness increases slightly toward the horizon
(Figure 114). Hence correlation-spectral analysis of the results of measure-
ments of the scattered radiation flux for cumulus clouds (see Chapter IV,

Section 3) in the first approximation also describes the variability of long-
wave atmospheric radiation.

Let us proceed to analysis of theoretical studies of the longwave radiation
field above cumulus clouds. The cloud field is simulated by means of a normal
random process (see Chapter I, Section 6) the parameters of which were determined
by way of experiment and were presented in Chapter III. Since no experimental
data were available on the meteorological parameters of the atmosphere in the
case of cumulus clouds, use was made of a model of labile stratification for
summertime conditions. We assume that the lower boundary of the clouds is
situated at an altitude of 1 km.

The means, dispersions, variation coefficients, and correlation functions
of the intensity and flux of ascending longwave radiation above cumulus clouds
have been calculated for the model of the atmosphere in question as a function
of the amount of clouds at the zenith.

The mean intensity of ascending radiation is expressed by

T4 =Tatn(0) +71ct[1 —n(0) J=Tntn(0)+Tctc (), (5.12)
in which the nonaveraged brightness of the clouds is calculated with the formula
[nfzo(Tn‘—VTh)‘. (5-13)

In this instance h is the height from the base of the cloud, Tn is the tempera- /240

ture of the lower boundary of the cloud, o is the Stefan-Boltzmann constant,
and VT is the temperature gradient of the cloud surface, assumed in our calcu-
lations to equal VT = 6.5° km 1,

To simplify the calculations we linearize relation (5.13) relative to h.

As a result of the simplifications we obtain
=0gTnt —40T,3VTh.
[nt =0Tnt —40Tn (5.14)

The error of formula (5.14) of course increases with increase in height h. When
h = 1 km the intensity of the ascending radiation is exaggerated by 6%.

Making use of the function of probability density distribution of the sur-
face of cumulus clouds in altitude (3.20) and formula (5.14) we obtain for mean
brightness InT the expression

-
04TAVT 5757 (5.15)

lnT=0Tn‘_" v—2—7—‘n(0)
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in which _
w= argeri[l —2n(0) ]. if n(0)=<<0.5

and - w= —argerf[1 —2n(0)], if n(0)=05

Substituting (5.15) in expression (5.12), we obtain the design formula
for the mean intensity of ascending radiation. The dispersion and autocorrela-
tion function are, in accordance with [28], expressed approximately by /242

0%, = (0.16VT T s;z_{.mz( - )+zk’ [oro(:2) T}

(0. lGVTaTT.S)Z {

(5.16)
and

r ()= o — ) )+

+ 2 d’""“( o) o}

in which ¢ is the probability integral,l®?K) is the k-order derivative of the
-0.3]|t

(5.17)

probability interval, and rz(t) = e is the correlation function of a

continuous random process (see Chapter III).
Let us now present the results of numerical calculations for the model of /243
the atmosphere described above, which were obtained by means of formulas (5.12)-
-(5.17). Figure 140 shows the angular distribution of the mean radiation
intensity for zenith cloudiness of 0.2, 0.5, and 0.8. It is to be seen that
the radiation intensity decreases with increase in the zenith angle of observa-
tion, the more rapidly the smaller is the zenith cloudiness. Figure 141
illustrates the mean ascending flux of radiation and its dispersion as a function
of coverage of the zenith. The mean radiation flux decreases slowly with
increase in the amount of clouds. The dispersion of the flux is small and
undergoes virtually linear increase with increase in cloudiness. This is clearly
to be seen from Figure 142, which shows the coefficient of variation in the
ascending flux of thermal radiation. With mean amounts of clouds the root mean /244
square deviation is approximately 2-3% of the mean.

The normalized correlation functions for a normal random process and for
the brightness of thermal radiation with amounts of clouds at the zenith of 0.1,
0.3, 0.5, and 0.7 are presented in Figure 143. We see that the correlation
radius decreases with decrease in the amount of clouds.

Comparison of the correlation functions presented in Figure 143 with the
correlation functions of zenith coverage presented in Figures 35 and 36
reveals that they differ but little from each other in the first approximation.
The correlation functions for the ascending flux of thermal radiation coincide
in the first approximation with the correlation functions of scattered radiation
and, as we saw earlier, also with the correlation functions of the descending
flux of thermal radiation of the atmosphere (see Chapter IV, Section 1).

168



It Section 3. Representation of
Distribution of Brightness of

0012 Longwave Radiation over the
nl0)=02

Sky by Means of Eigeafunctions

Theoretical calculations
were made of the eigenfunctions
and eigenvalues of the intensity
of thermal radiation averaged
over the azimuth and of the
zonal flux. The initial data
used were represented by the
results of experimental studies
of the distribution of cumulus
.- . - ; clouds over the sky (Chapter
0 4“0 80 v II1) and the mean distributions
calculated in the preceding
section of the intensity of
thermal radiation for clear and
cloudy skies as a function of
the zenith angle for model
stratification.

00114

Figure 140. Angular Distribution of
Mean Ascending Intensity of Thermal
Radiation (in mwe+cm~2-ster~l) with
Cloudiness at the Zenith of 0.2, 0.5,
and 0.8, as Calculated with Formula
(5.12).

s The intensity of thermal
radiation as a function of zenith angle ¢ was calculated with formula (5.10),
which may easily be reduced to the form

1} (9) =Ic} () +n (9T n} (9)— I} (9) ] (5.18)

Only a part of this formula —-[In¢(6) - IC¢(0)] is the weighting function for

the experimental data on the distribution of clouds over the sky in calculations
of the eigenvalues and of the eigenfunctions of the intensity of thermal
radiation. This greatly simplifies numerical calculations. The weighting
function and the intensity of back radiation for clear and cloudy skies as a
function of the zenith angle are presented in Figure 144,

On the assumption that the brightness of clouds and of the clear sky is
constant in time for individual zenith directions, the normalized correlation
matrix of brightness coincides with the correlation matrix of the presence of
clouds (see Chapter III, Section 4). The first three eigenfunctions for radia-
tion intensity, averaged over the azimuth, are presented in Figures 145-147.
Comparison of these eigenfunctions with the eigenfunctions for the presence of
clouds (Figures 49-51) reveals that they are similar. The eigenfunctions for
the intensity of thermal radiation at the horizon decrease somewhat more
rapidly than do the eigenfunctions for the presence of clouds. The dispersion
of radiation intensity eigenfunctions from observation to observation is smaller
than that of the corresponding functions for the presence of clouds. Comparison
of the first eigenfunctions of the intensity of shortwave (see Figure 119) and
longwave (Figure 145) radiation shows that the latter have no maximum but undergo
almost linear decrease with increase in the zenith angle. The second and third
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.eigenfunctions are similar in this instance. This indicates that, as with the
presence of clouds, the fluctuations in thermal radiation are the most extensive
around the zenith and decrease monotonically with increase in the zenith angle.

Ft
a

0040 -
0035 -

0 a5 © nlo)

S, x10° b
£0 -
0 05 (0. nlg)

Figure 141. Relationships Calculated with Formulas
(5.15) and (5.16): a, Ascending Flux of Thermal
Radiation (in mw2-cm~2) and b, its Dispersion (in
‘mw2ecm-*) Versus Coverage of the Zenith by Cumulus
Clouds.

The eigenvalues and the relative accuracy of expansion when the first ith
components are used for the thermal radiation intensity averaged over the /251
azimuth are presented in Table 8. The first eigenfunctions account for 81-85%
of the dispersion, and the first three eigenfunctions cover 94-96% of the
dispersion. Comparison of these data with Table 3 reveals that the thermal
radiation intensity is described more accurately by means of the first or first
three eigenfunctions than is the distribution of clouds.

Similarly calculated eigenfunctions for zonal thermal radiation are pre-
sented in Table 9, and the first three eigenfunctions in Figures 148-150. It
is to be seen that the first eigenfunctions account for 70-83% of the dispersion

and the first three around 95%.
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Figure 142. Coefficient of Variation in Ascending Flux
of Thermal Radiation Versus Coverage of the Zenith by
Cumulus Clouds,

Figure 143. Autocorrelation Functions of Normal Random Process

(—) and of Ascending Intensity of Thermal Radiation Calculated
with Formula (5.17), with Cumulus Clouds Present: — — —, n(0) =

= 0.7; ——, n{0) = 0.5; ---, n(0) = 0.3; — --, n(0) = 0.1.
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Figure 134. Intensity of Back Radia-
tion for Cloudy 1 and Clear 2 Skies
and Weighting Function for Cumulus
Clouds 3 Versus Zenith Angle, as
Calculated with Formula (5.18).
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0 40 80 ¥#
Figure 145. First Eigenfunctions of

Back Radiation Intensity Averaged
over the Azimuth Versus Zenith Angle
of Direction of Sighting.

The eigenfunctions of the
thermal radiation flux by zones are
similar to the eigenfunctions for
the relative zonal cloudiness
(Figures 52-54). The eigenfunctions
for the flux by zones at the horizon
decrease more rapidly in this
instance and their dispersion is
smaller in comparison with the
eigenfunctions for the relative
zonal cloudiness.

/252

Section 4. Experimental Studies of
the Fine Structure of Cloud

Brightness Fields in the 8-13 u
Spectral Region*

In the experimental research on the brightness fields of shortwave radiation
the results of which were presented in Chapter IV, no study was made of the
fine structure of brightness fields, and thus of the fine structure of cloud

formations.

Study of the fine structure of brightness fields in the visible

region of the spectrum proved to be impossible owing chiefly to the low
resolving power of the narrow angle radiation detectors (with a viewing angle
of the order of one degree; see Chapter II), and also to the considerable inertia

IThe authors wish to thank Yu. A. Shub for his valuable advice and the attention
he bestowed on the work, as well as G. F. Asyakin, N. Ye. Vystavkin, and
V. V. Mikhaylov for their assistance in the measurements and processing of the

results presented in this section.
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of the detectors and of the recording system as a whole (see Chapter I, Section
3). At the same time, study of the fine structure of cloud formations by
optical methods in the shortwave region of the spectrum is basically impossible
because of the averaging of the radiation scattered by cloud particles over the
considerable volume participating in formation of the light scattered by the
clouds.

X
X
04 -
04 |
0 T T ~ T
o \V e v
0
-a".
"04‘
Figure 147. Third Eigenfunctions
of Back Radiation Intensity
Averaged over the Azimuth Versus

Figure 146. Second Eigenfunctions of Zenith Angle.

Back Radiation Intensity Averaged
over the Azimuth Versus Zenith
Angle.

The finer structure of cloud
formations is accessible to
study by optical methods in the
infrared radiation region of the
spectrum, in which the brightness properties of clouds are determined chiefly
by their surface layer. This means, however, that only the structure of the
surface layers of the clouds are accessible to study.

The importance of research of this kind to determine the relations between
the radiation and the physical parameters of clouds has been pointed out in
many works [84, 110-112]. To establish these relationships it is necessary to
know the various parameters of the cloud cover: form, optical thickness, /253
albedo, moisture content, cloud brightness, and so forth, as well as their
variation in time and in space. One of the parameters determining the condi-
tions chiefly of the surface layers of the cloud cover, and accordingly the
one the most closely associated with their radiation properties, is the tempera-
ture heterogeneity of cloud fields.
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TABLE 8. EIGENVALUES OF THERMAL RADIATION INTENSITY /248
AVERAGED OQVER THE AZIMUTH

n(0) = n{0) = 03 n{0) = 03 n(0) =
n—05 n= 04 n= 05 , n= 07
—34 N=15 N=21 ] N =128
i S(X¢)-10-8 , } S(Xi)-10-3 1 Aig l S(X,) 103 Asg ‘ S(X.)-10-3 l Aig
1 0.2845 735 0.3719 85.6 0.2345 834 0.3820 813
2 0.0630 898 0.0311 92.8 0.0192 90.2 0.0508 92.1
3 0.0212 95.3 0.0172 96.8 0.0097 93.7 0.0177 96.0
4 0.0090 97.7 0.0070 98.4 0.0085 96.7 0.0081 97.7
5 0.0041 9838 0.0032 99.1 0.0041 98.2 0.0049 98.7
6 0.0027 99.5 0.0022 99.6 0.0033 99.4 0.0032 994
7 0.0013 99.8 0.0012 99.9 0.0011 9.8 0.0020 99.8
8 0.0010 100.0 0.0004 100.0 0.0005 100.0 0.0010 100.0
9 0.0001 1000 0.0002 100.0 0.0000 100.0 0.0001 100.0
TABLE 9. EIGENVALUES OF ZONAL FLUX OF ATMOSPHERIC /249
THERMAL BACK RADIATION AVERAGED OVER THE AZIMUTH
n(0) = 0.2 n(O) = N3 n(O) = 03 n(0) =
n= 05 n= 04 n= 05 n= 07
N=34 N=15 N=2] N =28
. S(Xi) -10-% A S(X;) - 10-¢ A9 ~ S(X.)-10°8 , Ay . S(X,)-10°¢8 Aig
1 0.3049 70.4 0.4370 80.3 0.1875 723 0.5164 83.3
2 0.0756 87.8 0.0685 9219 0.0363 863 0.0542 92.1
3 0.0339. 95.6 0.0180 96.2 00176 931 0.0265 9.4
4 0.0071 97.2 0.0107 98.2 00034 96.1 0.0107 98.1
5 0.0056 98.5 0.0065 99.4 0.0054 98.2 0.0064 99.1
6 0.0035 99.4 0.0019 9.7 0.0022 99.1 0.0030 99.6
7 0.0014 99.7 0.0013 999 0.0017 9.8 0.0018 999
8 0.0011 100.0 0.0017 100.0 0.0004 100.0 0.0010 100 0
9 0.0000 100.0 0.0000 1000 0.0000 100.0 0.0000 100.0

Problems of this nature relating to study of the spatial structure as
one determining the characteristics of the cloud cover have also been discussed

in [17, 114-116].

In what follows we present the results of experimental study of the fine
structure of cloud formations of various forms obtained by means of a high
speed instrument characterized by fairly high spatial resolution (4' x 4')
in the 8-13 u water vapor window. The instrument employed 1is described in
Chapter II, Section 4, and some of the results obtained are presented in [59,
117]. A report was made in [115] on investigation of the spatial structure
of the brightness fields of the clouds of the upper and lower tier in the
8-12 u region of the spectrum. The correlation functions of cloud brightness
presented in this work were obtained with an instrument possessing a fairly
high spatial resolution (10' x 30'). The results of these studies may not be
regarded as complete, however, since they were obtained for a specific cloud
field situation (at the zenith) over a short time interval (5 hours) with
equipment characterized by relatively low sensitivity and considerable inertia.

174



e T

90 4

Figure 148. First Eigenfunctions of
Zonal Back Radiation Versus Zenith
Angle.
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Figure 150. Third Eigenfunctions
of Zonal Back Radiation Versus
Zenith Angle.

methods the application of which would eliminate observer error.

Figure 149. Second Eigenfunctions
of Zonal Back Radiation Versus
Zenith Angle.

In the process of study of
cloud radiation processes we are
faced with the problem of deter-
mining the form of the cloud cover,
this at the present time being
accomplished exclusively by visual
means in keeping with the classifica-
tion of clouds [118]. As we know,
however, this method of determination
is to some extent subjective and
is not in keeping with the capabili-
ties of the equipment employed (see
Chapter II, Section 4, and [117]).
In. addition, visual determination
of the form of the cloud cover at
night is virtually impossible.
Hence to determine the form of
clouds for purposes of identification
in daytime and especially at night
it is desirable to develop equipment

time the region of natural cloud radiation (8-13 u) appears to be the most
promising one for the application of equipment methods.
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The number of parameters determining the radiation properties of clouds
is fairly large in the case of ground measurements, and for this reason simul-
taneous measurement of all of them is not possible at the present time. In the
process of the work measurement was made, along with the brightness structure
in the water vapor window, also of the air temperature of the ground layer,
the coordinates of the section of sky studied, and the altitude of the Sun. The
use of high speed equipment for brightness measurements permits the assumption
that these parameters are constant for individual specific observations.

In the following study of the radiation characteristics of cloud formations
the latter have been classified in accordance with {118]. In this case as
well, as in study of the structure of the cloud cover in the visible region
of the spectrum and the structure of shortwave radiation (see Chapters III and
IV), we assume it to be permissible to use the hypothesis regarding the
statistical isotropicity of the radiation fields and cloud cover of the forms of
clouds investigated, and also to apply the normal law of distribution to
fluctuation of the brightness fields of longwave radiation (see Chapter I,
Section 6). In studies of the fine structure of intensity it is more justifiable
to apply the hypothesis regarding isotropicity, since, according to the theory
of turbulence, the departures from isotropicity increase with increase in the
scales in space.

The results of many years of research make it possible to gain an idea
of the variability in space of the brightness of cumulus, altocumulus, and
cirrus clouds. Chiefly the results of measurement of a single-tier cloud
cover were subjected to processing. The research program called for the
following:

1) Determination of the influence of the Sun on the variability in space
of fluctuations in the radiation of various clouds;

2) investigation of the angular distribution of the radiation of a
cloudless sky;

3) comparison of the variability in space of the brightness of daytime
and nighttime clouds;

4) investigation of the fluctuations in radiation on the illuminated and /255
shaded sides of cumulus clouds of great thickness;

5) investigation of the isotropicity of the radiation of cirrus clouds.

The correlation function was calculated on the basis of the values of
the signal obtained from the output of the radiometer-pyrometer during operation
of the latter in the second mode: scanning at a frequency of 7 Hz over a
circumference with an angular radius of 5°. To automate the calculations the
signal obtained in one scanning period (one observation) is represented as
a sequence of readings following each other at an interval corresponding to
the spatial resolution of the instrument.
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The calculations were performed by a BESM-4 computer in accordance with
the formula

r (kA =i S E(ANH (R A1), 5.19) .

in which r(kAt) are the values of the function sought; £(iAt) are the values of
the signal; At is the reading interval, which equals 3+10 “sec; and N is the
total number of readings over the period of observation.

To increase the accuracy averaging was performed over the aggregate of
the various observations in study of the same form of cloud cover.

Under the assumptions made in the foregoing regarding the spatial structure
of clouds the argument of the correlation function is represented by only
one variable, the distance between the points of the section investigated.
However, the value of r(kAt) found by the method described above is the correla-
tion function obtained over the circumference, and its argument is angle ¥
expressed in kat. In order to effect transition to the correlation function
whose argument is the distance between points it is necessary to switch to the
variable

kAt

A0=2R SiﬂT »

(5.20)
in which R is the scanning radius, which equals 5°, and to express the correla-
tion function through this variable A8.

Typical correlation functions of the brightness of cumulus clouds measured
in the spectral regions of 8-13 and 10.2-11.5 p are presented in Figure 151 as /256
a function of scanning angle y and angular distances in the sky ¢, ¢. We see
that the correlation radius of small-scale heterogeneities is y = 2°,

In our case, in which § < 4°, expression (5.20) may be linearized to
A =~ y without substantial error. This means that the correlation function of
brightness as a function of angular distance in the sky is in form near that
of the correlation function of Figure 151. The correlation radius in this
instance is A9 < 2°, to which a linear distance on the cloud of the order of
100 m corresponds.

We use the spatial spectral density of longwave cloud brightness as the /257
basic characteristic of spatial variability of cloud formations. High-speed!
radiometry equipment permits measurement of the spectral components over such
short time intervals that the brightness variations of the section investigated
in time may be disregarded. 1Im this case the signal from the radiometer output
is periodic and a standard spectrum analyzer may be used for frequency analysis.

An S5-3 analyzer with a passband of Af = 6 Hz was used in our work. The spectral/258
density was determined by squaring spectrum for brightness and averaging the
values obtained over the observations (usually over 10-15).

If the length of the scanning line in space is known, the number of harmonics
may be expressed as the number of periods per radian, but it must be remembered
that the scanning trajectory is curvilinear in space. The first harmonic
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corresponds to a scanning line length equaling 31 angular degrees, and the
hundredth harmonic to one of 0,31°.

1(y)

£0

Figure 151. Correlation Functions of Cumulus Cloud Brightness,
Averaged over Observations, Versus Circular Scanning Angle y:
1, Ax = 8.5-12.5 y, & = 65°, ¢ = 50°; 2, Ax = 10.2-11.5 y,

% = 80°, ¢ = 75°.

The specific nature of the scanning has a particularly heavy impact on the
first harmonics, the values of which depend both on the fluctuation in radiation
and on the temperature gradient, which depends on the zenith angle of sighting /259
of the instrument and on the curvilinearity of the scanning trajectory.

Spectral densities S(k) of the brightness of cumulus clouds for zenith angle
# = 60-70° at azimuths ¢ = 0-360° are shown in Figure 152. As may be seen from
the Figure, the spectra are virtually independent of the azimuth. The dispersion
of the spectral density is slight (shaded areas) and may be ascribed to the
slight change in zenith angle A% = 10°, as well as to experimental errors
determined by the errors of the S5-3 analy:zer.

The results of study of the variability of the brightness of various clouds
in space as a function of zenith angle ® for azimuths ¢ = 20-40° are shown in
Figure 153. It is to be seen that the spectral density of the brightness of
altocumulus clouds has a greater abundance of small spatial heterogeneities than
that of the cumulus clouds and depends on the zenith angle. It is to be noted
that the heavy dependence of the spectral density for the low frequencies on
the zenith angle is due to the considerable contributfion made by the radiation
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of the atmospheric column and the variability in the amount of clouds along the
circular scanning trajectory, especially at small angles to the horizon [31,
105, 119]. This relationship is manifested in operation of the instrument in
the second mode, it being confirmed by the results of measurement of the
brightness of a cloudless sky. These results are presented in. Figure 154, which
reveals a sharp increase in brightness at small angles to the horizon. For

this reasonh the signal differentials increase with decrease in the -zenith angle
in circular scanning. This figure also shows the brightness of a cloudless

sky as a function of the zenith angle for various azimuths measured at intervals
of 10-20° over the range from 0 to 360°. The slight dispersion of brightness
over the azimuth may be explained by the varying degree of turbidity of the
atmosphere in the area of measurement. The results of many studies are in
agreement with the theoretical calculations [120, 1211.

Stm)

" . ;

1 20 50 X

Figure 152. Spectral Densities of Cumulus Cloud
Brightness (in (w-.cm-2-ster”1)2) Versus Number

of Harmonics k: 1, Ax = 8.4-12.5 p; 2, AX = 10.2-
-11.5 u; 3, Equipment Noise.

On the one hand, attention must be called to the fact that in the case of
the measured spectral densities of the brightness of cumulus clouds of great
thickness in the direction of the zenith (Figure 153, curve 1 (dot-and-dash
line)) the low-frequency component is smaller in value than in the case of /260
the spectra for clouds of the same form situated at the horizon. On the other
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hand, we know [122] that the coefficient of radiation blackness of cumulus
clouds is near unity, and the contrast between clouds and cloudless sky is at
the maximum at the zenith. It is to be noted that the temperature of cumulus
clouds differs by 10-15° from the temperature of the layer of atmospheric

air near the ground. This conclusion may not be drawn, however, on the basis’
of the value of the low-frequency components of spectral density.

‘Bray|

2

0 v - Y
4 5 10 50 «
Figure 153. Spectral Brightness Densities (in (wscm™2-
«ster 1}2) of Clouds of Different Form Versus Number of
Harmonics k at Ax = 10.2-11.5 p, ¢ = 20-40°. Curve :
% = 80-85°, ——, & = 0-5°; 1, Cumulus Clouds; 2, Alto-
cumulus; 3, Cirrus; 4, Equipment Noise.

This behavior of the spectral density may be ascribed to the fact that,
owing to the small turning angle of the field of view of the instrument in
space for individual observations, the scanning was performed cloud by cloud,
that is, high-frequency components were present in the spectral density of the
signal, ones due chiefly to fluctuations in brightness on the surface of a
cloud. As a matter of fact, the greatest dispersion of the values of the
low-frequency component in the spectral density of the signal are manifested
precisely for angles near the zenith angle. It follows that with the form of
scanning adopted determination of the spectral density of the brightness of
cumulus clouds of great thickness requires a greater number of observations -

than for clouds such as altocumulus ones. As was to be expected, the high / 261

frequency components of the spectrum are somewhat less pronounced than, for
example, for clouds of the same form measured at angles near the zenith angle.
This is due to the finite resolution of the instrument, that is, the linear
dimensions of the field of view in measurement of clouds on the horizon are
much larger than in measurements at the zenith. As a result, averaging by the
detector varies over the surface of the clouds and increases with the zenith
angle of observation (see Chapter I, Section 4).
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LAl Account must also be taken of
the fact that small brightness or

‘ temperatur: heterogeneities at

M 270 large zenith angles are filtered

out more extensively in view of the

scattering and absorption in the

atmosphere [10].

)

1.5 |

10 4

The layer of the atmosphere
between the clouds and the Earth's
surface has virtually no effect
on the spectral density at angles
8 = 0-40°. The spectral densities

- 240

L 180 for these angles coincide.
v ¥
° - 30 60 s The spatial structure of the
Figure 154. Examples of Dependence of brightness of cirrus clouds does
Brightness (in wecm-2-ster-1-10-3) of not lend itself well to dependable
a Cloudless Sky on the Zenith Angle description. The spectral densities
at Ax = 8.5-12.5 y. are fairly variable, as may be

seen from Figure 153, in which the
most typical cases for cirrus
clouds are presented.

In the processing of the materials it was observed, for example, that for
certain observations the spectral densities of the brightness of cirrus clouds
Ci differ little from the spectral densities of the brightness of altocumulus
clouds.

The dispersion in the spectral densities may be ascribed to failure to
allow for the various forms of cirrus clouds and to certain characteristics of
their structure. For example, the nature of the spatial structure of brightness
varies in linear scanning along and across Ci cloud banks (Figure 155). As may
be seen from this figure (curve 2), the signal is very jagged in scanning across
the banks, small spatial heterogeneities are present, and the fluctuations in
radiation are damped out on passage from bank to bank. There is little variation
in the brightness of cirrus clouds along the banks (curve 1) and between them
(curve 3), and small unevennesses are absent from the signal. The great
variability of the S(k) of individual observations of the brightness of cirrus
clouds is apparently determined by the fact that spatial heterogeneities of
small dimensions are present in some observations, while their weight is rela- /262
tively low in others. For example, for more precise determination of S(k) for
Cu the averaging for circular scanning should be carried out on the basis of a
larger number of observations in comparison with the more homogeneous Ac clouds.

The measurement procedure also provided for investigation of the effect of
the Sun on the spatial structure of the longwave brightness of clouds. For this
purpose study was made of the nature of fluctuations in brightness on the
illuminated and the shaded sides of clouds. Single-tier thick cumulus clouds
several dozen angular degrees in dimensions with clearcut boundaries and well /263
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illuminated and shaded sides were selected for observation. The instrument was
aimed at a cloud by means of an optical system integrated with the field of
view of the radiometer. It was noted that in individual instances the
fluctuations in radiation are more pronounced on the illuminated side, while
on the shaded side they are faint or altogether absent [59]. Figure 156 shows
the distinctive features of fluctuations in radiation on the illuminated and
the shaded sides of clouds. It is to be observed that the clouds with clearcut
borders 'and appreciably illuminated and shaded sides, which are convenient for
observation, were rather seldom encountered during the period of investigations
and for this reason relatively few such studies were conducted.

T4
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I+
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o 0 20 0 B¢
Figure 155. Examples of Variability of Cloud Brightness
(in w.ecm 2-ster 1.10°3) at A = 8.5-12.5 u; a, Thick
Cumulus Clouds; 1, & = 45°, ¢ = 305-340°, Daytime; 2,

¥ = 45°, ¢ = 23-58°, Nighttime; b, Cirrus Clouds: 1,
Along Banks, ¥ = 15-90°; ¢ = 300°; 2, Across Banks;

9 = 20°, ¢ = 290-325°; 3, Between Banks, ¢ = 15-90-15°,
14 305°.

Corresponding measurements were performed for the purpose of comparison
of the spatial structures of nighttime and daytime clouds; the results are
presented in Figure 157. The clouds could be classified as cumulus during the
day and at sunset. The measurements were conducted between 2200 and 2330
hours. It unfortunately cannot be stated that the clouds observed were also
of this form in the case of the nighttime observations. As may be seen from  *~
Figure 157, the averaged spectral densities of the brightness of nighttime and
daytime clouds, which were studied with approximately the same spatial
coordinates, differ only slightly from each other. However, in view of the /264
cooling of the clouds at night the curves of the spectral densities of
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brightness for the nighttime clouds are situated lower than the curves of the
spectral densities obtained for the daytime clouds.

@ b
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Figure 156. Exaggles_of Variability in Brightness
(in w -cm 2-ster 1:10 3) of Thick Cumulus Clouds at
% = 55°, a, AA = 8.5-12.5 u; b, AXx = 10.2-11.5 u.
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Figure 157. Spectral Densities of Brightness
(in wt-cm 2-ster 1)2) of Thick Cumulus Clouds
Versus Number of Harmonics k: Solid lines,

AX = 8.5-12.5 u, Dot-and-Dash Lines, AX = 10.2-
-11.5 p; 1, 4, Daytime; 2, 5, Nighttime; 3,
Equipment Noise.

The nature of the variability of brightness is also illustrated by Figure
155, from which it is to be seen that the small heterogeneities of brightness
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in the case of daytime clouds are somewhat more pronounced than for the nighttime
clouds. Should the fact ascertained in the foregoing of more extensive fluc- /265
tuation of radiation on the illuminated sides be ascribed to reflection of

solar radiation by the unevennesses of the sides of the clouds? Theoretical
estimates have been made that show that, owing to reflection of solar radiation,
brightness fluctuations in the spectral range of 8-12 u may at the maximum reach
values corresponding to variations in the radiation temperature of up to 0.1°.
Thus the more intensive fluctuations on the jilluminated side of clouds are
apparently caused chiefly by the temperature heterogeneities of the latter. These
heterogeneities are probably due to absorption of the radiant energy of the

Sun at all wavelengths and to more vigorous turbulent mixing on the illuminated
sides of the clouds.

The results obtained in investigation of the spatial structure of cloud
brightness may be utilized, for example, to determine the form of clouds both
in daytime and at night. Determination of the form of clouds by equipment
methods with sufficient dependability can be achieved by measurement of the
intrinsic radiation of clouds in the water vapor window.
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